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Abstract
The ODYSSEY system included a processor to perform polygon overlay and related

functions of planar enforcement.  The existence of this algorithm was reported in a
number of publications as the work progressed (White, 1978; Chrisman, 1979;
Dougenik, 1979; Lab for Computer Graphics, 1983), but the details of the actual
algorithm and data structures were not reported for institutional reasons (Chrisman,
1988).  The original authors of the WHIRLPOOL algorithm here present the polygon
overlay algorithm used by WHIRLPOOL, in greater detail than presented before.
ODYSSEY is not being presented as the most current software system, yet its polygon
overlay processor offers important lessons for current research.  

Background: A Brief History of Polygon Overlay Software
Polygon overlay has been a key problem to be addressed in software for handling

spatial data.  The most convincing evidence for the importance of polygon overlay is to
study the evolution of software over the past twenty years.  Polygon overlay became a
viable proposition when new algorithms found a way around the high costs of
computational complexity.  The older generation, up to MOSS, compared every polygon
with every polygon.  These programs might claim the "efficiency" of first inspecting the
minimum bounding rectangle around the polygons before checking each pair of
segments, but the asymptotic complexity would still be of O(n2).  

The ODYSSEY system included an processor to perform polygon overlay and
related functions of planar enforcement.  The existence of this algorithm was reported in
a number of publications as the work progressed (White, 1978; Chrisman, 1979;
Dougenik, 1979; Lab for Computer Graphics, 1983), but the details of the actual
algorithm and data structures were not reported for a variety of mostly institutional
reasons (Chrisman, 1988).  Subsequent work may not have had access to the
ODYSSEY research.  The time has come to remedy this lack of information.

WHIRLPOOL algorithm
The basic algorithm of WHIRLPOOL is based on a form of divide and conquer

termed a "local processor" (Chrisman, 1976) by the design team.  It adopted the sorted
band sweep computing paradigm that was developed at the time (Shamos and Bentley,



1978; Fowler, 1978; Bentley, 1980).  This approach remains common in GIS software
(van Roessel, 1990).  Inside the general paradigm there are some critical decisions.  

The ODYSSEY system operates in a file environment using sequential access, not a
database environment using random access.  As described at the time, it was not
presented as a GIS, but a geographic information processing system (Chrisman, 1979).
WHIRLPOOL often requires a sorting phase to precede each processing step.  The
sort/merge used was an implementation of polyphase sort merge as described by Knuth
(1973).  

Preprocessing: Monotonic sections sorted
Prior to sorting, WHIRLPOOL creates "monotonic sections" – groups of line

segments that retain the same signs of delta X, delta Y, following Burton (1977).  These
sections have useful properties, such as not being able to intersect twice.  Other systems
have opted for the simpler (fixed length) structure of segments because monotonic
sections are variable length.  Statistics from typical applications show that monotonic
sections reduce the number of segments to process by a significant factor for commonly
processed textures of data.  These differences alter the meaning of the term n commonly
used to describe complexity.  After the monotonic sections are formed, the output is
passed to the sorter.  The band sweep is operated on the minimum Y coordinate of each
section.

HADES / CIRCE
The heart of the WHIRLPOOL algorithm involves two broad phases, first to find

intersections and create nodes, then to detect and name polygons.  The second phase
(called NAMER) is a relatively straightforward vector implementation of Rosenfeld's
two pass algorithm (van Roessel, 1990; 1991) so it will not be discussed in great depth.
The first process of detecting intersections is operated by a coroutine between a geometric
intersection manager (HADES) and a topological cluster manager (CIRCE).  This
interaction uses a complex set of data structures to ensure rapid operation.  

Detecting intersections (HADES)
HADES manages the chains.  Its primary responsibility is to detect intersections and

to create the new chains that result from splitting.  The primary data structure for these
chains is a tree (implemented using a height-balanced AVL tree (Adelson-Velskii and
Landis as quoted in Knuth, 1973, p. 453) using the X minimum of the chain as the key.
Since the chains at this point are monotonic sections, this value is the X coordinate of one
of the nodes.  The purpose of the tree is to limit searches for potential intersections.  Each
input chain is checked to detect all intersections that it generates.  Its X extent can be
located in the tree [O(log n)], then the tree can be traversed to detect chains with
overlapping X extents.  The process need only concern itself with X, because the band
sweep ensures that resident chains overlap in Y.  Not all chains go into the tree.  Chains
beyond some length cover enough of the X axis that they must be checked against
everything.  Figure 1 shows the contents of the tree and the long list.



D
ire

ct
io

n 
of

 s
w

ee
p

"Band"

Highest chain
flushed out

Lowest chain 
not yet read in

Long List

Holds chains over some X extent, 
scanned sequentially

Balanced Tree

Key: X min.
Height balanced AVL

Figure 1: Two structures store chains in the current band
(Only the bold chains are currently in residence.)

Code fragment for general control of intersection detection for one input chain:
locate chain whose Xmin is the largest < Input_chain.Xmax+epsilon
REPEAT until Xmin < Input_chain.Xmin–epsilon–Xlong

IF (chain windows overlap) find_intersections (old.chain, Input.chain)
next chain by walking tree structure

FOR each chain in LongList
IF (chain windows overlap) find_intersections (old.chain,Input.chain)
next chain by walking list structure

This method offers advantages over scanning all resident chains or Rtrees –
alternatives in common use.  In a typical overlay run with over 100,000 polygons, the
brute force technique using only resident chains would check 19 million pairs of chains.
The tree structure above reduces this to 2 million.

At the detailed level, the calculations of intersections seem to attract continued
attention, although the topic has been fairly fully studied.  HADES developed a version
of CROSS based on Douglas (1972) with some extensions required for the topological
processing of an overlay program.  One small, but highly important, feature is that the
calculations of intersections are not calculated in the coordinate system of the whole map.
One of the points is selected as a new origin, thus reducing the number of significant



digits (Dougenik, 1979; Chrisman, 1983)  HADES introduces the concept of a fuzzy
tolerance, expanding the number of basic potential intersection cases to 91 (9X9).  Some
authors continue to publish their discoveries of these basic cases without the clarity of
Douglas's presentation.  Dougenik's reformulation for fuzzy intersection is based on
ternary logic.  Each point is judged with respect to the other line to be on one side or the
other or too 'close' to call.  This ternary judgement is repeated with two meanings of
'close'; one is 'exact' – to the machine precision, and the other is controlled by the fuzzy
tolerance ε.  The four determinations are considered together; one point on one side and
the other on the other means that the two lines intersect, at least when extended.  Such
cases are reasonably straightforward, it is the coincident points and 'splits' (where one
point comes close to a segment) that involve more inspection.

Fuzzy intersections and cluster handling
One major issue in WHIRLPOOL is the calculation of intersections with a fuzzy

tolerance (reported by Dougenik, 1979).  During the development of this software, the
first approach attempted to resolve tolerance relationships as they were detected.  Trial
applications uncovered cases requiring special treatment of clusters - those points found
within a tolerance of each other.  Any algorithm which attempts to solve tolerance
relationships "on the fly" will confront the same problems, with detrimental
consequences for the quality of the resulting files.  A brief discussion of this issue has
been published in a paper on scale changing (Chrisman, 1983).  The CIRCE solution
collects clusters while intersections are detected, then processes them once all the
intersections are known.  Clusters are resolved into nodes by moving the cloud of points
to certain selected points in the cluster.  No point can be moved more than the tolerance
and no selected points will be within tolerance of each other.  

The issue of cluster handling has particular importance since certain current software
packages have ignored the evidence presented in summary form earlier.  A number of
systems resolve tolerance relationships interactively or "on the fly".  Some papers
suggest that a new point be calculated to best represent a portion of a cluster.
WHIRLPOOL research provides counterexamples to that approach.  Some recent papers
have proposed methods for treatment of multiple tolerances (Zhang and Tulip, 1990;
Pullar, 1991), an idea anticipated in the design of WHIRLPOOL.  The method proposed
by Pullar (1991) involves calculating a mean location, an operation fraught with peril in
such a processor.  Revealing the details of the WHIRLPOOL implementation should
assist in this important area of research.

The basic idea of CIRCE is to ensure the basic conditions specified above.  The first
part of the process is a searching problem.  Each point on the input stream and each point
created by intersection must determine if any other point fall within a specified tolerance
(called epsilon [ε] here after the usage of Julian Perkal), see Figure 1.
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Figure 2: Basic search radius

Range searches, such as finding all points within epsilon, require sophisticated data
structures.  Most spatial index methods provide an approximate solutions (such as
placing data in rough boxes) then require post-processing to determine exact rela-
tionships.  Some examples include EXCELL, range trees, quad trees and related
structures.  The common approximate solution might have been used for WHIRLPOOL,
but it would have had some difficulties.  Points from unrelated objects might be thrown
into one bucket, and it is still possible that elements of one eventual cluster to occur in
many buckets.

The CIRCE strategy begins by constructing a virtual "box space", a grid of square
cells (called boxes here) where the diagonal of the cell is ε long (see Figure 3).  This
ensures that any points inside one box belong in the same cluster.  

ε

Boxes 
constructed with 
diagonal of ε, 
arranged as grid

Figure 3: Construction of box space

By using a relatively small box, a number of adjacent boxes will have to be
examined.  Although the box occurs in a cellular tesselation, it was not represented in a
raster structure.  Due to the divide and conquer, only a small portion (O(n0.5)) of the
chains are resident at one time.  A raster at the level of coordinate resolution would be
punishing in size.  For instance, a one meter ε might be quite reasonable for an assessor's
parcel coverage, so the potential number of cells in a township (10km X 10 km) would
require 100,000,000 elements, almost all of them empty.  A typical parcel coverage in
Dane County only had 10,000 coordinates, and only a few hundred would be resident at
any one cycle of the HADES process described above.  In the place of a raster
representation, a hashing scheme was used to permute the integer coordinates of the box
into a hash key.  Hashing is particularly adapted to searching for items most of which are
not in the table.

CIRCE examines adjacent boxes to determine if there are any points within ε.  Since
the diagonal of the box is the search radius, the eight adjacent boxes can contain points
within tolerance from almost anywhere within a particular box.  There are exceptions
near the diagonals, but it was decided to simplify and always examine these eight (shown



in dark grey in Figure 4 B).  In the center of the box, these eight are the only potential
boxes within tolerance.  Each point is classified into one of the nine portions of the box
shown in Figure 4A.  The separating lines are 0.415ε and 0.585ε respectively.  In the
corners, as many as fourteen boxes must be searched, as shown in Figure 4B for the case
of the southwest corner.
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number of  cells searched

11 8 11

14 11 14

ε

B: cells searched 
shown in grey, basic 8 
in dark grey

Internal divisions of 
box given as 
proportion of  ε

A typical search shown 
from southwest portion 
of box.

Figure 4: Boxes searched depending on location within box

The hash function relies mostly on the X coordinate with only the low order digits
coming from the Y axis taken modulo 5.  The choice of 5 is based on the width of the
local region searched as shown in Figure 4B.  Hashing, when applied in sparsely filled
tables, can provide essentially constant average cost of search, although the official worst
case analysis is horrible [O(n) for each search] (Knuth, 1973 p. 506).  The form of
hashing selected for CIRCE was a primary hash modulo the length of the table (chosen
to be prime) with a secondary hash based on another prime number.  The drawback of
using a secondary hash is that a deleted mark must be placed when removing an entry,
since some other entry might have wanted that slot and been relocated by the secondary
hash.  The constant nature of the search cost in CIRCE is assured by "rehashing" (wiping
the table clean and reinserting all boxes) whenever the number of secondary searches
exceeds some factor of the primary searches.  While this tuning parameter can be reset,
the value of 1 seems to operate smoothly.  This means that a search is never more than
two table lookups.  It is difficult to create any tree structure with such behavior for large
amount of data.

The box space is one one of the data structures used in CIRCE.  Figure 5 shows the
general scheme of the interaction required to make CIRCE operate.  The general scheme
is hierarchical.  Boxes collect all the chain ends (called members) that occur in the box.
A linked list is used.  Boxes are in turn grouped into 'clusters' if any two members fall
within tolerance of each other.  Clusters consist primarily of a linked list of boxes, but
there is an additional function.  CIRCE controls the deletion of information as it is
completed.  Each cluster records the maximum Y coordinate of its members.  This
figure is updated as new members are added or clusters are merged.  A form of 'heap' is
used as an index to the lowest Ymax.  This heap is a binary tree where element i is less
than both 2i and 2i+1.  Ther is no particular relationship between 2i and 2i+1, so it does
not sort the list in a complete sense.  Insertions into such a list (and deletions from the
list) are O(log m) where m is the number of elements.
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Figure 5: Data structure diagram for CIRCE

As in many data structures, the overall structure is circular.  The members refer to the
chain entry – the only pointer to the actual location of the chain.  [WHIRLPOOL operates
in a dynamic memory context, so chain may be moved.]  The chains (managed by
HADES) contain a reference to the cluster at each end of the chain.  This pointer is
eventually replaced when a cluster is completed with an output node identifier.  When
both ends contain nodes, the chain is complete and is written to the output stream.  

As input occurs through the intersection procedures of HADES, the CIRCE process
does not modify anything.  Clusters accumulate all the coordinates without judging them.
Only when all the intersection activity has moved past a cluster does it begin to prune
them down.

The problem of selecting points from a cluster to become the output nodes offers
some interesting problems.  Clusters can become relatively large and often more string-
like than compact.  In some routine overlay problems, the largest clusters can contain
well over thirty members.  When performing deliberate coarsening, the maximum can
increase further.  

The CIRCE algorithm was designed to provide for different procedures to select the
points to retain as nodes.  Unfortunately, there have not been many alternatives
implemented in code.  In the early design, it was decided that an optimal solution



(minimizing the number of points selected or minimizing the distance of aggregate
movement) was a clear specification of the 'set covering problem', a member of the NP
Complete family (Bruckner, 1978).  Attempting to solve an NP Complete problem on a
set of size thirty might take substantially more computing than the intersections of
thousands of chains.  The basic method developed adopted a greedy heuristic.  First, the
upper half of a matrix of squared distances is constructed.  All points are marked as
unreachable.  Then, the point adjacent to the most unreachable points is selected to
become a node.  Adjacency is determined by ε, the tolerance, not by the topology of the
linework.  Points within ε are judged adjacent (perhaps this simplification may be the
cause of some crudeness in the results and the possible source of some failures where the
topology of the resulting linework is non-planar).  Under these rules, a cluster that
contains one central point within tolerance of all the other members will be pulled into
that central node.  Clusters longer than ε will have to have multiple nodes.  

The procedure is deliberately done in two phases.  The determination of 'reachable'
points is not the final choice of which points move to which nodes.  Once the set of
nodes has been selected, points are assigned to the nearest node, not necessarily the one
which reached it first.  Moving to the nearest node is done without regard to the topology
of the lines, an issue that might bear reexamination if multiple tolerances are ever
implemented.

Under the basic rule, if there are a number of points with the same number of
adjacencies there is no predicting which is chosen.  When operating this program for
cleaning spaghetti input, it would often chose the point at the end of a short overshoot,
creating wobble in lines digitized as straight.  To correct this problem, additional logic
was inserted to count the number of times a point was referenced.  A one reference point
(overshoot) would not be selected when a four valent point had the same adjacency.
While this correct a problem for that situation, there are many other custom logics to
develop.  Multiple tolerances deserve attention, and were considered during the
ODYSSEY design phase.  We felt it was more important to get a single tolerance engine
to operate first.  Multiple tolerance issues create the need for a much more sophisticated
analysis.

After the decisions on point movement are made, there are some topological
consequences.  Some endpoints of short chains become collapsed into the same node.
These 'vacuous' chains are simply deleted.  In some cases, a whole node is vacuous and
no output lines are produced.  These could be converted to 'point features', but in the area-
oriented attribute world of ODYSSEY, they were deleted.  In another case, the ends of
two colinear chains could become identical (as in simplifying a double line road to a
single line.  In such a case, there is a need for a topological examination of the attributes
attached to the chains.  This 'congruence' analysis counts the number of times that an area
reference (left/right) is made, corrected for chain orientation.  Left references count
negative and right as positive.  At the end of the analysis, all area references should cancel
except the two outermost areas that survive to become the left and right of the single
chain produced.



Conclusion
As conclusion, the design goals of ODYSSEY, in creating a robust, efficient

polygon overlay processor, can be shown to have been achieved.  WHIRLPOOL has
deficiencies that are discussed to strengthen current research.  Operating statistics show
that the processor can be compute–bound despite massive data throughput.  This
approach, based on pipleines of sequential files, deserves a second glance even in a
period of rather different computing costs.
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Pseudo code for HADES / CIRCE

appropriate initialization (set epsilon, open Red and Blue files - sorted chains)

Procedure SOUSA [the band manager]
preload keys (Y min) from both files (large value if not present)
REPEAT until (both files exhausted)

select lower of two keys, set Y level (SCUM := key – epsilon)
request CIRCE processor SPIN to clear clusters below SCUM
create "New chain"
invoke HADES (New chain)
reload key for file that contribute new chain

SPIN (big number) to purge last chains)
Procedure HADES (Input.chain)

set intersection records to null; create temporary "entry" for chain; set X min
locate chain whose Xmin is the largest less than Input_chain.Xmax+epsilon
REPEAT until Xmin < Input_chain.Xmin–epsilon–Xlong

IF (chain windows overlap) SHADES (old.chain, Input.chain, tree)
next chain by walking tree structure

FOR each chain in LongList
IF (chain windows overlap) SHADES (old.chain,Input.chain, LongList)
next chain by walking list structure

SHADES (Input.chain, self, new)
FOR each remaining intersection record

construct pseudo "chain" for points introduced along old chains
perform all above steps as if this were an input chain

Procedure SHADES (old.chain, new.chain, flag) [flag values: tree, long, new]
if (flag ≠ new) 

INTERS (old.chain, new.chain, CROSS)
if (no intersection records generated) EXIT

BLDSRT
HYDRA
CHARON
TWIST   [inform CIRCE of new chain ends to manage (or new location of old data)]


