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Summary: 

Background: The digital cadastre is one of the most fundamental spatial layers that are used by 

various organisations, however, the geo-positional accuracy of the digital cadastre is variable 

which causes numerous problems. The traditional costs of upgrading the spatial accuracy is 

very time-consuming and costly. This project explores the feasibility of semi-automatic or 

automatic feature extraction of fence-lines using Lidar and Imagery as well as evaluate the 

feasibility of using these fence-lines for upgrading the digital cadastre and the accuracies 

obtained. 

 

Objectives: The objectives of this project is to evaluate the suitability of imagery and Lidar for 

upgrading the spatial accuracy of digital cadastre; assess the accuracy achievable through these 

methods; develop (semi-) automatic feature extraction methodologies and assess applicability 

for operational implementation; and provide recommendations on application of imagery and 

Lidar for the upgrade of the digital cadastre. 

 

Data: As the developed methodology was expected to operate on both urban and rural areas, 

Lidar data (2ppsm) and Imagery (10cm GSD) was available for a rural area near Toowoomba 

and for a semi-urban area at Morayfield both in Queensland. The data for Morayfield was 

captured over two different times and had different combined point density (24 ppsm and 64 

ppsm), while the ground sampling distance for the imagery were 10cm and 6 cm respectively. 

The Morayfield Lidar data was verified using differential GPS field survey which demonstrated 

that the RMS error for vertical accuracy of the Lidar data ranged between 3mm to 3cm. The 

GPS field survey coordinates was further used for image rectification. Digital cadastral data was 

available for both the areas. Further Lidar, imagery and cadastral data was made available for 

Adelaide, South Australia for testing of the algorithm in an urban area with different fence-line 

characteristics. 
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Methodology: A multi-pronged approach in feature extraction was used to evaluate the 

suitability of imagery and Lidar for extracting linear features (fence-lines) with a view to 

upgrading the spatial accuracy of digital cadastre. A critical part of the development effort was 

to ensure that the method was suitable to cater to a variety of data sources under wide ranging 

environment for the capture and availability of data sources. It was also considered critical for 

development of a GUI with a user-friendly framework for quality assessment and refinements 

of the result. The method was designed to automate a majority of the steps in the selected 

workflows. After initial exploration of multiple feature extraction methods, it was identified 

that Lidar based methods (under sparse, medium and high-density point cloud collection 

conditions) provided more robust feature extraction results using automated methods and thus 

remained the core focus for the remainder of the project work. To cater for areas which lacked 

Lidar point clouds or benefited from existing imagery, additional Image-based feature 

extraction methods were developed to complement the Lidar-based fence-line extraction 

methods. The project methodology was thus designed to account for use of Lidar point clouds 

collected at various point densities and aerial photos at multiple resolutions. Design of the 

methodology also catered for semi-urban and rural areas that accounted for physical 

differences in actual fence features. Finally, a GUI was developed with consideration given to 

the provision of a software that was robust and easy to use either on an ENVI/IDL or an open 

source environment.  

 

Results: The developed workflow has shown promising results, with extraction accuracy that 

should allow for an accurate adjustment of the existing cadastre. Fence-lines extracted from 

Lidar have a combined horizontal accuracy of 0.282m while fence-lines extracted from imagery 

have a combined horizontal accuracy of 0.258m. Although the accuracy of image-based feature 

extraction appears to be better, the number of fence-line segments extracted from Lidar is 

significantly higher in number. 
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Conclusion: This aim of the project was to explore the feasibility of using Lidar point cloud and 

imagery data for feature extraction leading to improvement of existing cadastral survey using 

fence-lines. This goal was achieved by thorough testing and development of a workflow for 

semi-automated extraction of fence-line boundaries from airborne laser scanning and imagery 

data. To ensure that the developed workflow could be implemented over rural and urban 

areas, the study areas were chosen with such characteristics and with varying data density to 

simulate real conditions. Thus, it can be concluded that Lidar based fence-line extraction can be 

used, and where necessary augmented by image-based extraction using the methods and 

workflows developed during this project and cadastral boundaries block adjusted with a very 

high degree of confidence. 
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1 Introduction 

The Digital Cadastral Database (DCDB) is the spatial representation of current land parcels in a 

jurisdiction. It usually includes a legal Lot on Plan description and relevant attributes and a 

graphical representation of the parcels. The DCDB provides the map base for systems dealing 

with land related information. 

The DCDB in Queensland was created by digitising existing cadastral maps at a variety of scales 

and accuracies. A positional accuracy value has been allocated to all parcels in the DCDB. The 

value reflects the maximum error status of the parcel and has been derived from the capture 

process or assigned as the spatial accuracy of the DCDB has been upgraded. The maximum 

error in the DCDB is currently +/- 63m. The maximum error status is based on an assumed 

plotting accuracy for the source mapping.  

Stakeholders rely on the graphical representation of the parcels to be spatially accurate. Since 

the initial capture of the DCDB from paper based maps, data users are now utilising the data in 

ways that requires a higher spatial accuracy than was achieved in the initial capture. The 

difference in the position of the DCDB is visible to users when overlaid over aerial and satellite 

imagery. Councils, utilities and other agencies involved in asset management now have highly 

spatially accurate data of their assets which they attempt to link to the DCDB. 

This project explores the extent to which Lidar data, in cases complemented by high-resolution 

aerial imagery can be used to upgrade the spatial accuracy of the digital cadastre. Automated 

and semi-automated feature extraction are employed to detect, extract and validate the 

location of natural and man-made features which may indicate the location of property 

boundaries, and these are correlated with existing digital cadastral data in order to identify and 

rectify geo-positional biases within the existing digital representation of the cadastre. 

The primary focus of the project is upon enhancement of the absolute accuracy of the cadastral 

database rather than upon its relative accuracy, though overall spatial accuracy upgrading in 

non-urban areas are also addressed. The project centres upon two main research components. 
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The first involves the selection and evaluation of candidate 2D and 3D feature extraction tools. 

The second comprises a pilot study, largely empirical in nature, which involves the 

determination of geo-positional biases between the digital cadastre and land parcel boundary 

segments extracted via the feature extraction approach.  

The project culminates in this report that not only presents the results of the pilot study and 

assesses the relative value of various data sources and feature extraction methodologies, but 

also identifies operational opportunities and limitations. 

1.1 Problem Statement 

The digital cadastre is one of the most fundamental and important spatial layers maintained by 

land agencies across Australia and NZ. It is used by a multitude of “downstream” organisations 

in a diverse range of applications and provides the frame of reference for a number of other 

spatial layers.  

Notwithstanding its critical role, the digital cadastre is, in many ways, not fit-for-purpose on 

account of its variable spatial accuracy (Appendix 10.1). The time and cost of upgrading the 

accuracy of the digital cadastre by field survey procedures is beyond what the relevant agencies 

can realistically afford. An alternative methodology is required that brings substantial cost and 

productivity gains, while delivering a worthwhile improvement in spatial accuracy, especially 

absolute geo-positional accuracy.  

Without exception, efficiency and productivity gains come at a cost. In the case of upgrading 

the digital cadastre using remote sensing data, there is the potential in certain situations of a 

managed accuracy cost being incurred. The question then is: will this alternative remote 

sensing approach deliver sufficient accuracy at a reasonable cost and in a reasonable 

timeframe? This is the question to be answered by this project.  

The research project will in particular, investigate the use of various remotely sensed data, 

namely imagery and Lidar, and evaluate their suitability in the context of upgrading the spatial 

accuracy of the cadastre.  
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The intent is to not only provide an empirical assessment of the alternative technology options, 

but to make recommendations on how and under what conditions, the findings of the project 

might be applied in an operational setting by DNRME and, potentially, by other land agencies 

across Australia and NZ. 

1.2 Project Aim 

The aim of this project is to evaluate the feasibility of utilising Lidar and Imagery to extract 

fence-lines for geo-positional upgrade of digital cadastre and evaluate the accuracies obtained. 

1.3 Project Objectives 

1. To develop upgrading methodologies for cadastral data based on automated feature 

extraction and to assess their applicability and potential for operational implementation 

by partner land agencies; 

2. To evaluate the contribution of remotely sensed data sources (e.g. airborne and satellite 

imagery, and Lidar) to upgrading the spatial accuracy of the digital cadastre; 

3. To identify, through experimental testing, the accuracy achievable from those data 

sources individually and in combination; 

4. To deliver recommendations on how and under what conditions remote sensing data 

might be employed for cadastral upgrade purposes. 

1.4 Research Questions 

The following research questions are formulated which will assist to achieve the aim and 

objectives of this project: 

1. Is it possible to detect and extract, both manually and automatically, geo-positional data 

using either Lidar data or Ortho-imagery complemented by Lidar data, to accuracy levels 

corresponding to those specified for digital cadastral data? 
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2. What spatial resolutions and metric quality of input data are required to meet cadastral 

accuracy requirements; i.e. what density of Lidar data and what sources and scales of 

imagery (airborne and satellite) are appropriate to support boundary feature extraction 

for cadastral upgrade? 

3. What developments in, and implementations of 2D and 3D automated feature 

extraction are necessary to support semi- and fully-automatic workflows and data 

processing pipelines for the process of upgrading the digital cadastre from imagery? 

4. Can the georeferencing of feature data extracted via the developed methodology be 

employed to effect an upgrading of the current cadastre to the required accuracy, 

primarily the absolute geo-positioning accuracy of the digital cadastre? 

5. Does the proposed scenario for upgrading the accuracy of the digital cadastre via 

imagery and Lidar data have potential in the future for operational implementation by 

the relevant custodians of the cadastre? 

1.5 Project Significance 

The output of the project includes procedures and associated processing workflows, graphical 

user interface and related source codes and computational tools for Lidar and integrated 

image-based extraction of fence-lines for upgrading the cadastre. 

It provides a new and more efficient means to maintain geo-positional accuracy of the digital 

cadastre and is expected to automate aspects of the upgrade process which would otherwise 

be an expensive and relatively slow manual process.  

There is potential for significant scientific or technical impact through process automation and a 

new approach to cadastral data acquisition and upgrading as well as the exploration of new 

methods to extract features that are extremely narrow and have associated elevation ranges. 

The target of this project is land agencies who are custodians of the cadastre. The processes 

developed in this research provide an alternative approach to the current, labour-intensive and 

expensive land survey or image based technique for cadastral upgrading. 
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1.6 Benefits of a Successful Outcome 

The project demonstrates the benefits of CRCSI R&D expertise in the enhancement/upgrading 

of both the accuracy and operational work processes related to an important spatial data set, 

namely the cadastre.  

The success of this project demonstrates the capability of the CRCSI and partner agencies to 

work together in the conduct and management of applied research that aims to enhance the 

business capabilities and products of Government sector participants. 

1.7 Project Deliverables 

The preparation of a report that not only presents the results of the pilot study and assesses 

the relative value of various data sources and automated feature extraction/upgrading 

methodologies, but also identifies operational opportunities and limitations, and draws 

conclusions regarding the prospects for adoption of the developed methodology by the partner 

agencies. Software tools, algorithms, workflow documentation, etc. are also made available to 

partners for either adoption or further development. 

1.8 Project Risks 

The accuracy of image-based cadastral data collection falls short of requirements: To mitigate 

that it is necessary to ensure comprehensive initial analysis of data sources & take account of 

differing requirements between urban and non-urban cadastres. 

Development of automated process, while demonstrating concept feasibility, may fall short of 

operational requirements & thus not be implemented by DNRME or other land agencies: To 

mitigate that it suggested to ensure both developed manual and semi-automated workflows 

offer practical alternatives in such circumstances. 
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2 Review of Previous Work 

This section reviews some of the previous work done in Image processing and Lidar processing 

relevant to this project which is feature extraction for linear features that would assist in the 

extraction of fence-lines for cadastral data geo-positional upgrade. 

This section explores some of the work done in image processing first, followed by Lidar 

processing work, which then leads to a combined Lidar and Imagery processing field of 

research. 

2.1 Image Processing 

There has been a relatively large body of work for detection of linear/rectilinear features from 

LIDAR Point cloud and Imagery with varying level of success in feature extraction. While some 

of these extraction methods may be applied to update the cadastre, no literature were found in 

the scope of the search for this project discussing the extraction of fence-lines for updating the 

cadastre. 

The focus of this review is therefore to explore the availability of methods and techniques that 

are used for generalized detection of linear features that could then be extrapolated to 

detection of features like fences. The literature discuss feature extraction methods using mainly 

two data sets, namely Imagery and Lidar point cloud.  The third approach or method is fusing 

the information derived from Imagery and LIDAR as a combined method.  

Image based methods can broadly described as edge detection methods using one or the other 

type of edge detectors. One of the most popular method for Image based detector is Canny 

Edge detector (Canny 1986; Ding and Goshtasby 2001; Green 2002; Juneja and Sandhu 2009; 

Biswas and Sil 2012; Shrivakshan and Chandrasekar 2012). 
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The edge detectors of images usually are of the following type: 

Gradient edge detectors - detects the edges by looking for the maximum and minimum in the 

first derivative of the image (Shrivakshan and Chandrasekar 2012); uses first directional 

derivative operation and includes algorithms such as Sobel operator (Sharifi et al. 2002); 

Laplacian - The Laplacian (Mexican Hat operator) method searches for the zero crossings in the 

second derivative of the image to find edges; (Shrivakshan and Chandrasekar 2012); 

Zero Crossing – uses second derivative and includes Laplacian operator and second directional 

derivative; (Sharifi et al. 2002); 

Laplacian of Gaussian – developed by (Marr and Hildreth 1980) as a combination of Gaussian 

filtering with the Laplacian; 

Gaussian edge detectors – symmetric along the edge and reduces the noise by smoothing the 

image; includes Canny edge detector; 

Coloured edge detectors – divided into three categories of output; Fusion methods, Multi-

dimensional gradient methods and Vector methods. 

Linear Methods - Also known as linear method, it involves discrete approximation of the first 

order derivative in a given direction, Pratt (0o, 45o, 90o, 135o); Prewitt (compass direction), 

Argyle’s operator (combination with Gaussian); Macleod’s operator (combination with 

Gaussian) (Peli and Malah 1982); 

Non-Linear Methods – 2 x 2 or 3 x 3 window, gradient which is defined as the maximum over 

Өn of the magnitude of the partial derivative in direction Өn. Roberts: max{|f(i, j) – f(i + 1, j +1)|, 

|f(i, j + 1) – f(i + 1, j)|; Sobel: (3 x 3 window); Prewitt: (same operator as Sobel, different 

scaling); Kirsch; and Robinson: (3-level and 5-level, template matching using a set of masks to 

determine the existence of an edge and direction); Abdou (extended the masks to larger 

window sizes 5 x 5, 7 x 7, 9 x 9); Wallis (Laplacian on the logarithm of the intensity); Smith and 

Davis (two operators for binary and grey level images that measure the ratio between the 

balance of a bi-modal distribution and a measure of disorder); Hale (implement a two-

dimensional operator by rotating a one-dimensional operator); Rosenfield (computing 
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differences between averages of non-overlapping neighbourhoods that meet at the same 

point); (Peli and Malah 1982) 

Best Fit Method – best fit of a function to a given image, Hueckel’s method (computed 

parameters based on orthogonal functions from comparison of circle and ideal 2D edge); Abdou 

(optimal edge fitting based on discrete image model); Modestino and Fries (determine filter 

operation such that its operation on a noisy image is the best approximation to the operation of 

Laplacian on the ideal image); (Peli and Malah 1982). 

Several authors have developed performance evaluation criteria for edge detectors: 

Precision, Resolution and Accuracy (Sharifi et al. 2002); Signal to Noise Ratio (SNR) and Average 

Risk defined as the ratio of the number of detected edge points which do not coincide with the 

ideal edge, to the number of detected edge points which coincide with the ideal edge (Peli and 

Malah 1982); Error rate, Localisation and Response  by Canny; Distribution of the detected true 

edge points, developed by Fram and Deutsch as well as Maximum likelihood estimate of the 

ratio of the total number of true edge points to the total number of detected edge points; 

Weighted and normalised deviation of the real edge from the ideal edge line, developed by 

Pratt;  

Further quantitative performance evaluation criteria were: Percentage of edge points detected 

on the ideal (desired) edge; Number of detected edge points which do not coincide with the 

ideal edge (normalised by the number of points on the edge); Mean width of a detected edge, 

defined as the ratio of the total number of detected edge points to the number of ideal edge 

points; Weighted and normalised deviation of an actual edge point from the ideal edge as 

defined by Pratt; Average squared deviation of a detected edge point from the ideal edge; and 

Mean absolute value of deviation (Peli and Malah 1982). 

Additionally, qualitative edge detection performance criteria were: Type of contour (perfect 

edge, broken edge, perfect but broken at critical points such as corner of square); Single or 

double edge (a single or two separate edges); and Distortion (shift of the edge) (Peli and Malah 

1982). 
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Edge detectors are expected to have the following properties (Ziou and Tabbone 1998): 

Detect properties of image such as discontinuities in the photometrical, geometrical and 

physical characteristics. Variations in the grey level of the image include discontinuities (step 

edges), local extrema (line edges) and edge meets (junctions). Physical edges correspond to 

variations in reflectance, illumination, orientation, and depth of surfaces and is proportional to 

scene radiance which is represented in the images by the change in intensity function.  

Smoothing of Image – positive effect – reduce noise, ensure robust edge detection; negative 

effect – information loss; 

Image Differentiation – is the computation of the necessary derivatives to localise the edges 

(localise variations of the image grey level and to identify the physical phenomena that 

produced them). The differentiation operator is characterised by it order, its invariance to 

rotation and its linearity; 

Edge Labelling – localising edges and increasing signal-to-noise ratio by suppressing false edges 

and involves finding the local maxima along the gradient vector; 

Multi-detector and Multi-scale approaches – common convolution operators are of the form 

(fs*I)(x,y) where I is the image, fs is the filter and s the scale; multiple edge detectors and scales 

are necessary for multiple images. 
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2.2 Lidar Processing 

Data processing can be automatic or semi-automatic and can include multiple operations such 

as filtering, modelling of systematic errors, feature detection and line thinning (Sithole and 

Vosselman 2003b). 

Most of the Lidar filtering methods facilitate the extraction of features of interest by filtering 

the element that would potentially confuse an accurate extraction process by modelling an 

accurate bare earth surface that becomes the backbone of downstream processes. These 

methods include filters such as: 

Iterative linear least squares interpolation – which removes a low-degree polynomial trend 

surface from the original elevation data to produce a set of reduced elevation values. Here,  

firstly a rough approximation of the terrain surface is created, then sign of the residual checked 

which says negative values are terrain and the process is iterated (Liu 2008). 

Comparative local curvature filter – used to filter tree points by comparing local curvatures of 

point measurements which was developed by (Haugerud and Harding 2001) and analysed in 

(Zhang et al. 2003) 

Adaptive TIN model – used to find ground points in urban areas. Firstly, seed ground points 

within a user-defined grid of a size greater than the largest non-ground features are selected to 

compose an initial ground dataset. Then, one point above each TIN facet is added to the ground 

dataset every iteration if its parameters are below threshold values. The iteration continues 

until no points can be added to the ground dataset. However, the problem with the adaptive 

TIN method is that different thresholds have to be given for various land cover types. This 

method was proposed by Axelsson  and analysed by (Zhang et al. 2003). 

Slope based filter – identifies ground data by comparing slopes between a LIDAR point and its 

neighbours. A point is classified as a ground measurement if the maximum value of slopes 

between this point and any other point within a given circle is less than a predefined threshold. 

The lower the threshold slope, the more objects will be removed. The threshold slope for a 

certain area is either constant or a function of distance. A reasonable threshold slope can be 
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obtained by using prior knowledge about terrain in the study area. This method works well in 

flat urban areas, but has errors when applied to vegetated or variable slope areas.  It assumes 

that the gradient of the natural slope of the terrain is distinctly different from non-terrain 

objects. This method was proposed by Vosselman and analysed by (Zhang et al. 2003);  

𝐷𝐸𝑀 = 𝑝𝑖 ∈ 𝐴 | ∀ 𝑝𝑗 ∈ 𝐴 ∶ ℎ𝑝𝑖
− ℎ𝑝𝑗

 ≤  ∆ℎ𝑚𝑎𝑥  (𝑑 (𝑝𝑖, 𝑝𝑗))   (Vosselman 2000) 

(Vosselman 2000) proposed three ways to derive filter kernels based on knowledge about the 

height differences in the terrain (filters 2 and 3 make use of training data set): 

1. Synthetic Function – based on terrain shape and precision of height measurements: 

∆ℎ𝑚𝑎𝑥 (𝑑) = 0.3𝑑 + 1.65√2𝜎 

Where 0.3 is for 30% terrain slope (different for different slope), and the second term is to 

allow that 5% of the terrain points with a standard deviation 𝜎 may be rejected 

2. Preserving important terrain features – derive the terrain shape characteristics from a 

training sample consisting only of ground points such that the points in this area can be used to 

empirically derive the maximum height differences as a function of the distance between two 

points – this filter assists to maintain important terrain features but may also accept points that 

are non-ground: 

 

3. Minimising classification errors – minimising errors by omission or commission for ground 

points. If the height of a ground point at a given distance is known, determine height 

differences between other points using probabilities derived from frequency counts of height 

differences between point pairs in a training data set of ground points, and between point pairs 

from the training set of ground points and other point from the set of unfiltered data. These 

values of height differences can be taken as the maximum height differences that are allowed 

in the filtered data in order to minimise the number of classification errors: 
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Mathematical morphological filter are a type of slope based filter mainly used for bare-earth 

extraction. Lidar images are converted to regular, greyscale, grid image in terms of elevation, 

while shapes of elevated buildings, cars etc. can be identified by change in grey tone, and 

algebraic set operations are performed to identify objects (Zhang et al. 2003). The main 

objective is to classify Lidar data into two classes, namely ground and non-ground points 

(Vosselman 2000; Aktaruzzaman and Schmitt 2010). Ground data is used for DTM generation 

while non-ground data is used for object detection and subsequent classification. Other results 

by various authors are as follows:  large height difference is unlikely to be caused by steep slope 

in terrain (Vosselman 2000; Baligh et al. 2008); process of finding local minima and identifying 

terrain points from coarse to finer grid (Hu, Y. 2003); establishing the topological and geometric 

relations between bare-earth and surface objects, identifying surfaces whose perimeter is 

raised above the neighbourhood (Sithole and Vosselman 2003a). 

Spectral Information Integration: Mapping spectral value from image pixel to Lidar point data 

mostly used for misclassified points between buildings and trees.  

Calculate colour index:  CI = green / (red+green+blue)  

where the index classified values are as: buildings < 0.35 < trees. (Aktaruzzaman and 

Schmitt 2010) 

 

A brief look at the literature was also made with a view to identify error in LIDAR data and its 

classification and for methods used to detect these errors: Commission error which results in 

classification of non-ground points as ground measurements (Vosselman 2000; Zhang et al. 

2003); Omission error – removes ground points mistakenly (Zhang et al. 2003); and Systematic 

error which is visible when there are differences in height when combining data from adjacent 



13 

 

strips (Vosselman 2000) and can be eliminated by modelling the errors and performing a strip 

adjustment. 

Methods of error detection include Wavelet De-Noising to assist in evaluating the response of 

filters (Baligh et al. 2008); Ground truth; Derived filter functions to check against other filter 

results (Vosselman 2000); and Manual comparison to evaluate filter performance against that 

performed with manual filtering  (Sithole and Vosselman 2003b). 

In a report submitted to ISPRS, (Sithole and Vosselman 2003b) make a comparative assessment 

of different filters. A comparison of open-source Lidar filtering algorithms in a forest 

environment is made by (Montealegre et al. 2015). An extensive review of filtering methods 

and algorithms and overview of LIDAR point cloud processing software is abundant in literature: 

(Tao and Hu 2001; Zhang and Whitman 2005; Fernandez et al. 2007; Baligh et al. 2008; Meng, 

Currit, and Zhao 2010). 

Issues with computational efficiency are documented by (Sithole and Vosselman 2003a); a brief 

study on the Lidar data capture accuracy is discussed by (Montealegre et al. 2015) who 

generally stipulates this to be  0.15m in vertical and 1m horizontal. 

New filters and algorithms for classification have been developed by several authors. Table 2-1 

shows a list of methods and the authors who developed them that were researched for this 

project. 

Table 2-1: New Filters or algorithms developed in these papers 

Developed by Method 

(Zhang et al. 2003) Progressive morphological filter for removing non-ground 

measurements from airborne LIDAR data 

(Brunn and Weidner 1998) Hierarchical Bayesian nets for building extraction using dense DSM 

(Charaniya et al. 2004) Supervised parametric classification of ALS 

(Chen, C. et al. 2017) Fast and robust interpolation filter for ALS point clouds 
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(Chen, Q. et al. 2007) Filtering ALS data with morphological methods 

(Silván-Cardenás and Wang 

2006) 

Multi-resolution approach for filtering Lidar altimetry data 

(Vosselman 2000) Slope based filtering of laser altimetry data 

(Wang, O. et al. 2006) Bayesian approach to building footprint extraction from ALS 

(Aktaruzzaman and Schmitt 

2010) 

Automatic object detection to support urban flooding simulation 

(Elmqvist et al. 2001), 

(Elmqvist 2002) 

Active contours – applied to Lidar data the active shape model 

behaves like a membrane floating from underneath the data points 

(Sohn, G and Dowman 2002) Regularisation method – TIN progressively densified and points on TIN 

are bare-earth while the rest are objects 

(Roggero 2001) Modified slope based filter – variant of the morphological filter 

developed by Vosselman 

(Brovelli et al. 2002) Spline interpolation – made of five steps, Pre-processing; Edge 

detection; Region growing; Correction; and DTM computation 

(Wack and Wimmer 2002) Hierarchical modified block minimum – algorithm where DEMs of 

progressively lower resolutions are created 

(Axelsson 1999, 2000) Progressive TIN densification – a sparse to dense TIN is derived from 

Lidar points based on threshold values 

(Sithole and Vosselman 2001) Modified slope based filter – variant of morphological filter developed 

by Vosselman, works by pushing up vertically a structuring element (in 

the shape of an inverted bowl) from underneath a point cloud 

(Pfeifer et al. 1999; Pfeifer et 

al. 2001), (Kraus and Pfeifer 

1998, 2001), (Briese and 

Pfeifer 2001) 

Hierarchical robust interpolation - a rough approximation of the 

terrain is first computed. The vertical distance of the points to this 

approximate surface is then used in a weight function to assign 

weights to all points. Points above the surface are given a small weight 

and those below the surface are given a large weight. In this way the 

recomputed surface is attracted to the low points. 
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An extensive review of literature was made to assess unique applications of LIDAR filters with a 

view to implement and/or improve techniques to be sued for this project. These unique 

application include Automatic object detection (Aktaruzzaman and Schmitt 2010), Automatic 

structure detection in a point cloud of an urban landscape (Sithole and Vosselman 2003a), 

Segmentation of unstructured point clouds (Bassier et al. 2017), Lidar data classification using 

extinction profiles and composite kernel (Ghamisi and Höfle 2017), Tensor modelling based ALS 

data classification (Li et al. 2016) and Hough-transform and other algorithms for automatic 

detection of 3D building roof planes from Lidar (Tarsha-Kurdi et al. 2007). 

A review of the literature was made to understand current level of accuracy, performance and 

cost associated with the feature extraction process. This would enable an adequate comparison 

to be made with the software development as part of this project and provide as key input in 

aligning with the accuracy required for this project. (Flood 2004) discusses on ASPRS guidelines 

for vertical accuracy reporting of Lidar data. Effect of Lidar data density on DEM accuracy is 

detailed by (Liu et al. 2007). (Stoker et al. 2016) discuss evaluation of single photon and Geiger 

mode Lidar for 3D elevation program. Linear Lidar versus Geiger-mode Lidar - impact on data 

properties and data quality by (Ullrich and Pfennigbauer 2016) provided a background material 

should the findings from this project be expanded to include future state-wide capture using 

Geiger Mode Lidar methods. Modelling vertical error in Lidar derived DEM has been dealt by 

(Aguilar et al. 2010).  

Methods to assess the performance of a Lidar algorithm were available in literature. These 

include: 

• Global and local context – spatial coverage possible, larger the better (Sithole and 

Vosselman 2003a); 

• Computational efficiency – Time taken to perform filtering (Sithole and Vosselman 

2003a); 

• Data structure – in (Sithole and Vosselman 2003a) single data structure represented 

by the profiles and line segments used for both segmentation and classifications with 

no fall back on other data structures nor other support data derived, assists to speed 
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up the algorithm; in (Sithole and Vosselman 2003b), some filters work on raw point 

clouds while some work on resampled image grid; 

• Verticality – ability to handle surfaces lying vertically above each other (Sithole and 

Vosselman 2003a); 

• Adaptability – for solving different detection tasks (Sithole and Vosselman 2003a); 

• Point density – evaluation of filter performance based on Lidar point density 

(Vosselman 2000); 

• Lidar data noise – accounting for Lidar data noise and final data precision (Vosselman 

2000); 

• Type I vs. Type II Errors – Errors in Commission or Omission (Sithole and Vosselman 

2003b) 

• Performance in Steep Slopes – Different performance criteria to flat terrain (Sithole 

and Vosselman 2003b) 

• Working around special features (such as bridges) –  (Sithole and Vosselman 2003b) 

• Assessment of outliers –  (Sithole and Vosselman 2003b) 

• Performance on areas with vegetation on slopes –  (Sithole and Vosselman 2003b) 

• Effect of Lidar resolution –  (Sithole and Vosselman 2003b) 

• Test neighbourhood – Filters operate on a local neighbourhood; Algorithms can 

perform three kinds of comparison: Point-to-point (compare known point to classify 

unknown point); Point to Points (compare known point to classify unknown points); 

Points-to-points (compare known points to unknown points) (Sithole and Vosselman 

2003b); 

• Measure of discontinuity – “most algorithms classify based on some measure of 

discontinuity. Some of the measures of discontinuity used are, height difference, 

slope, shortest distance to TIN facets, and shortest distance to parameterised 

surfaces” (Sithole and Vosselman 2003b); 

• Filter concept – “every filter makes an assumption about the structure of Bare Earth 

points in a local neighbourhood. This forms the concept of the filter”: Slope-based – 

slope or height difference between points measured and classified based on a 

threshold; Block-Minimum – Horizontal plane with specified buffer zone to classify 

points in or out of buffer; Surface-based – parametric surface with corresponding 

buffer zone to identify bare-earth points; Clustering / Segmentation – if points 
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cluster above its neighbourhood then it must belong to an object (Sithole and 

Vosselman 2003b) 

• Single vs. Iterative processing – Recursive vs non-recursive with advantages in 

computational speed for single pass versus accuracy in multiple pass (Sithole and 

Vosselman 2003b) 

• Replacement vs. Culling –  (Sithole and Vosselman 2003b) 

• Use of first pulse and reflectance data –  (Sithole and Vosselman 2003b) 

 

There are multiple papers that were explored to find methods of utilising a fusion of Lidar and 

Imagery. Table 2-2 shows some studies that have utilised an imagery and Lidar fusion feature 

extraction method. 

Table 2-2: Studies with feature extraction using Image and Lidar fusion method 

Developed by Method 

(Cheng and Weng 2017) Urban road extraction from combined high-res sat image and ALS 

(Du et al. 2016) Building change detection using old aerial images and new Lidar data 

(Gerke and Xiao 2014) Fusion of ALS point clouds and images for supervised and 

unsupervised scene classification 

(Hermosilla et al. 2011) Evaluation of automatic building detection approaches combining 

high resolution images and Lidar data 

(Hu, X. et al. 2004) Automatic road extraction from dense urban area by integrated 

processing of high-res imagery and Lidar 

(Kim and Medioni 2011) Urban scene understanding from aerial and ground Lidar 

(Meng, Currit, Wang, et al. 2010) Object-oriented residential building land-use mapping using Lidar 

and aerial imagery 

(Peng and Zhang 2016) Building change detection combining Lidar and ortho image 

(Rottensteiner et al. 2003) Detecting buildings and roof segments by combining Lidar and 

multispectral images 
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(Schenk and Csathó 2002) Fusion of Lidar and aerial imagery for a more complete surface 

description 

(Sohn, Gunho and Dowman 

2007) 

Data fusion of high-res satellite imagery and Lidar for automatic 

building extraction 

(Wang, H. and Glennie 2015) Fusion of waveform Lidar and hyperspectral imagery for land cover 

classification 

(Wang, L. and Neumann 2009) Automatic registration of aerial images with un-textured aerial Lidar 

data 

(Zhou and Zhou 2014) Seamless fusion of Lidar and aerial imagery for building extraction 

(Robinson et al. 2014) Multi-scale smoothed, 90m digital elevation model from fused ASTER 

and SRTM data 

(Huang et al. 2011) Information fusion of aerial images and LIDAR data in urban areas: 

vector-stacking, re-classification and post-processing approaches 
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3 Study Area and Data Acquisition 

3.1 Background 

Lidar and Imagery of various resolutions were acquired at selected test sites. This section 

discusses the rationale behind the selection of those test sites and the data acquired.  

Two sites with rural and urban characteristics were selected to ensure that the developed 

fence-line detection algorithm was able to detect fences for different kinds of built-up areas. It 

was assumed that the terrain and fence-lines in the two selected areas would serve as 

representative site for most other areas in Australia or New Zealand.   

3.2 Terrain characteristics 

Natural and man-made features such as vegetation, power-lines, open spaces, road structures 

and other man-made features are present in both the suburban and rural areas. The two 

selected sites have differing elevation changes in the terrain, and the fence-lines have their own 

characteristic differences. In both the areas, fences with different construction materials such 

as wooden, metal colour-bond and chain-wire fences are present. Fences are wholly or partially 

visible, and fences have hedges running alongside them, which has led to algorithms 

misidentifying the fence-lines. 

The purpose of looking into variations in the study area is to train the future fence detection 

algorithms to work as efficiently in multiple environmental conditions. While designing data 

capture strategy for this project it was considered appropriate to design strategies that best 

suited the upgrade requirement by extracting fence-lines in both rural and urban areas.  
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3.3 Study area  

Two representative rural and urban study areas were identified for the workflow development. 

Morayfield in the north of Brisbane was identified as a representative test area in a semi-urban 

environment, while Toowoomba in the west of Brisbane was selected as a representative area 

for a rural test site.   

3.3.1 Semi-urban test area: Morayfield 

This area is representative of a semi-urban environment with relatively smaller property sizes 

with distinct fence-lines. An outline of the test areas is shown in Figure 3-1 (a) and (b) with the 

location of the study area and an image taken over the study area. 

 

 

Figure 3-1: (a) Extent of the Project area in Morayfield, and (b) Areal image of the Project area 

 

3.3.2 Rural test area: Toowoomba 

A second pilot area, representative of rural property is in the outskirts of Toowoomba, a city 

west of Brisbane. The area consists of relatively larger property sizes with different type of 

fences (usually posts connected by metal fences) compared to the Morayfield test site. An 
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outline of the test areas is shown in Figure 3-2 (a) and (b) shows the location of the study area 

and an image taken over the study area. 

 

Figure 3-2: (a) Extent of the Project area, (b) Areal image of the Project area 

 

3.4 Existing Data 

Lidar and Imagery data was available over the Toowoomba pilot area from the archive held by 

DNRME. Free test data was made available by RPS Australia of 24ppsm including stereo image 

for the initial development of the processing workflow while waiting for the data acquisition 

over Morayfield. 

The project initially used the following data for workflow development, however since one of 

the objectives of the project was to evaluate feature extraction at various resolutions, it was 

decided to acquire Lidar and Imagery over Morayfield (see Section 3.5) to ensure that data 

captured at the same flight over the same area was utilised for evaluation: 
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Morayfield initial data: 

Aerial Lidar: There were 8 tiles of LIDAR point cloud provided with a point density per tile that 

varies between 4-8ppsm. Fusing of point cloud data from 8-Lidar tiles thus yielded a combined 

point density of approximately 24ppsm. 

Aerial Photo: There are 72 RGB aerial images with a GSD of 8cm. The photos have adequate 

overlap for bundle block adjustment and have the required interior and exterior orientation 

parameters. 

  

Toowoomba: 

Aerial Lidar: The Lidar point cloud consists of a single tile covering approximately 30 sq.km 

(5km X 6km area) where the average point density is approximately 2-3ppsm. 

Aerial Photo: An ortho-photo at 10cm GSD available for the area was clipped to match the 

extent of the LIDAR tile. 

 

Adelaide, South Australia: 

Aerial Lidar: The Lidar point cloud consists of multiple square tiles over the CBD of Adelaide 

with an approximate point cloud density of 20ppsm. 

Aerial Photo: An ortho-image probably captured simultaneously with the Lidar data was 

provided to the project along-with the digital cadastre and control point vector shapefiles.  

 

Geiger Mode Lidar, USA: 

Aerial Lidar: A Geiger Mode Lidar point cloud over USA was made available for a small area 

with an approximate point cloud density of 32ppsm. 

Aerial Photo: A small imagery file of low resolution that marked the area of interest in graphics 

was provided, however as this was of a very low resolution, this was not used.  
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3.5 Data acquisition 

Additional high-density airborne Lidar data using Trimble AX60i sensor (Appendix 10.3) was 

captured over the Morayfield area. The combined point density for the multiple flight lines 

resulted in most areas with a density of 50 to 100 points per square metre. 

Multiple overlapping flight-lines were flown to achieve a higher density combined point cloud. 

Aerial imagery was simultaneously captured using AICP65 Pro camera with 6cm GSD that 

resulted in overlapping stereo imagery used for ortho-rectification.  

(Figure 3-3 Left) shows the photo centres of imagery data capture and (Figure 3-3 Right) shows 

the flight lines. There are 34 flight lines in total, 17 each in the north-south and east-west 

direction. A total of 68 Lidar scenes were captured while the total number of imagery captured 

was 1156. 

  

Figure 3-3: (Left) Photo centre over Morayfield for aerial imagery data capture, (Right) Flight lines for 
Lidar and Imagery data capture 
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3.6 GPS Field survey 

After the Lidar and Imagery data capture, GPS field survey (Figure 3-4) was done to verify the 

accuracy of the Lidar data and for ortho-rectification of stereo imagery. Five locations that 

could be identified in the imagery were selected. These selected locations were flat planes of 

around 1m2 to enable Lidar data validation as per ASPRS Guidelines for vertical accuracy 

reporting for Lidar Data (Flood 2004). In addition three permanent marks were selected to tie it 

to the national datum and the CORS network of Caboolture used for initial data processing. The 

final data processing was done using AUSPOS solution (Table 3-1).  

 

 

Figure 3-4: GPS Field Survey locations 
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Table 3-1: Extract from AUSPOS Solution for GPS Field Survey Calculations 

 

MGA Grid, GRS80 Ellipsoid, GDA94 

 

 

 

 

 

 

 

 

Reference Stations used for the AUSPOS solution 
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3.7 Image Ortho-rectification 

Image ortho-rectification was done for captured data in Morayfield in a software called Icaros 

One Button using camera parameters shown in (Appendix 10.1) and photo centre coordinates 

from on-board navigation systems.  

The Imagery was captured at 6cm GSD and had multiple overlaps from both north-south and 

east-west flight directions (Figure 3-5 Top). The ortho-rectified image using the supplied photo-

centre coordinates showed that there was a systematic shift of 1.2m (Figure 3-5 Middle) in all 

the images with respect to data captured by Lidar systems. As both Lidar and Imagery had been 

captured at the same time from the same plane using the same reference CORS station, the 

shift could be attributed to the accuracy attained by the GNSS system for the camera.  

The images were ortho-rectified again using coordinates obtained from the GPS field survey 

and DEM from Lidar, and the result of the ortho-rectification showed good match with lines 

obtained from Lidar (Figure 3-5 Bottom).  
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Figure 3-5: Image capture and processing (Top) Aerial photo of 6cm GSD; (Middle) Systematic shift 
noticed during ortho-rectification; (Bottom) Ortho-rectified imagery using GPS ground control 
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Discussion: The initial ortho-rectification demonstrated that there is a potential for error 

through systematic shift during ortho-rectification which can lead to incorrect positioning of 

cadastral data. It is not certain whether it is quite common for ortho-rectified imagery supplied 

to the department to have these systematic errors or whether they have been ortho-rectified 

using ground control and errors minimised. 

Therefore, it is recommended that imagery should be ortho-rectified using GPS field survey 

coordinates and high-resolution DEM preferably obtained from Lidar to improve the results of 

feature extraction or data validation as demonstrated by the improved result of line-fit based 

on the new ortho-rectification. 
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4 Methodology 

4.1 Background 

This section addresses objective one of this research. High density Lidar data complemented by 

high-resolution imagery was used in the development of an independent as well as an 

integrated workflow for extraction of fence-lines to be used for DCDB block-adjustment. The 

data for the project were sourced from multiple sources including conducting a flight for data 

acquisition for high-resolution latest data.  

The project draws on existing expertise and past research outputs from the CRCSI’s “Feature 

Extraction” Program, other existing research, and ESRI Australia and Harris Geospatial’s 

expertise. This existing body of knowledge was adapted to apply and extend these capabilities 

to optimally address the needs of the project.  

The specific requirements of this project was to extract fence-lines which are narrow linear 

features at a given elevation range and have a range of characteristics. Empirical assessment of 

the different data sources in various combinations was undertaken based on both cadastral 

data and ground truth information.  

Various candidate 2D and 3D feature extraction tools were selected and evaluated before 

finalising an independent workflow for Lidar data plus an integrated workflow for imagery and 

Lidar data which extracted fence-lines to be used form block adjustment of digital cadastral 

data. 

The evaluation of the data, the workflow, and the feasibility of utilising the results for cadastral 

upgrade included the determination of geo-positional biases between the digital cadastre and 

land parcel boundary segments extracted via the feature extraction approach for fence-lines. 
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4.2 Research Steps 

4.2.1 Project set-up, Literature Review and Planning 

A comprehensive literature review of research into feature extraction from Lidar and Imagery 

was undertaken. It also included existing work in upgrading the cadastre via imagery and Lidar, 

from aerial & space-borne platforms.  

This review of research revealed that while there are numerous existing feature extraction 

methodologies and applications that have been used to delineate linear features, yet there are 

no research that have focussed on extracting the fence-lines with a view to move the graphical 

representation of the digital cadastral boundaries with geo-position inaccuracies to the ground 

positions accepted by landowners.  

Further, the existing research revealed that while there have been capabilities to extract a 

power-line, there have been no research to explore the feasibility of extracting a narrow 

feature such as a fence that may be built using various construction methods, have various 

heights above the ground, often have hedges running along it, and are often obscured by 

existing trees and man-made structures. 

4.2.2 Accuracy requirements for Queensland cadastre 

An investigation into the existing accuracy of Queensland cadastre, the accuracy requirements 

associated with cadastral upgrading, and that achievable through the adopted methodology 

was undertaken.  

The starting point for exploring the workflow was through high-resolution Lidar data. After 

multiple algorithms and workflows and been explored, the adopted workflow was tested for 

different resolutions of Lidar data and an integrated Lidar plus Imagery workflow. High-

resolution Lidar data and Imagery were acquired of appropriate resolution and geo-positional 

accuracy. High-resolution Lidar data has demonstrated a capacity to identify linear features 

such as power-lines. Thus, it was expected that a similar resolution Lidar would assist in 

identifying fence-lines, and high-resolution imagery can be used as a complement to produce 
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an integrated boundary detection tool. However, it is noted that this detected boundary lines 

may or may not coincide with a property boundary. 

4.2.3 Study area identification 

Identification of the pilot project area and associated data sources, were done carefully noting 

the requirement to include both urban and non-urban environments and the desirability of 

having access to multiple sources of data.  

Also, at least one of the areas needed to be in a location where it would be feasible to acquire 

suitable imagery and Lidar data while maintaining the selected terrain characteristics, noting 

that resolution requirements and accuracy tolerances in rural areas need not be as stringent as 

those in cities and towns. 

4.2.4 Manual feature extraction and accuracy analysis 

An initial manual feature extraction and upgrading exercise was performed, the aim of which 

were: 

i. To validate the overall upgrading workflow envisaged for the semi- and fully 

automatic method being developed and tested; 

ii. To assess the metric performance of the various data sources, and verify that the 

accuracy of the feature extraction could be comparable to a relatively spatially 

accurate cadastre;   

iii. To assess the feasibility of block adjusting a distorted cadastre into its expected 

spatial location using the extracted fence-lines and derive metrics of evaluation of 

accuracy;  

iv. To provide the benchmark or control data against which the semi- and fully 

automatic methods were evaluated. 
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4.2.5 Evaluation of alternative methods 

Several different methods of feature extraction from Lidar, Imagery and Integrated methods 

were explored. The results were evaluated and some of the methods were discarded while 

parts of some of the methods were used for the final processing workflow that was adopted. 

4.2.6 Processing pipeline and software development plan 

This phase involved identification of the series of manual steps for the development of software 

to support the automated extraction of cadastre-relevant features from the imagery and Lidar 

data, with appropriate analytical functions to quantify geo-positioning discrepancies with 

respect to the existing digital cadastral data. Several methods were explored and finally a 

workflow for Lidar and another for integrated Lidar plus Imagery was finalised with an overall 

workflow shown in Figure 4-1, and detailed processes shown in Figure 4-14 and Figure 4-15.  

 

 

(Lidar) 

 

 

 

(Imagery + Lidar) 

 

Figure 4-1: Processing overview for (Top) Lidar data and (Bottom) Integrated Imagery and Lidar data 
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4.2.7 Automated feature extraction and data analysis 

A workflow/processing pipeline to support the application of the adopted (semi/fully) 

automated feature extraction tool for the extraction of fence-lines was developed and 

packaged in a graphical user interface (GUI).  

The new software developed to support the automated feature extraction/upgrading stage 

included an independent process for feature extraction from Lidar and an integrated feature 

extraction method from Lidar and Imagery.  

The output of the feature extraction process primarily comprise of linear features forming 

initially non-concatenated boundary segments represented by fences which can be used as is or 

cleaned to extend to the intersections from which cadastral lines or polygons can be block-

adjusted. The extracted line features are then be compared to the current cadastral database 

to ascertain the spatial accuracy of the extraction as well as the cadastre and to quantify 

corrections, mostly geo-positional biases, which need to be applied to the cadastral data. 

4.2.8 Evaluation of feature extraction 

An experimental evaluation of the semi- and fully automatic feature extraction and cadastral 

upgrading methodology was undertaken for the developed workflow over a range of different 

sites, from urban areas through to rural properties.  

The purpose here is to fully assess the developed workflow in terms of its practicability, 

accuracy, completeness, and general reliability as a means of automated upgrading of the 

cadastre to the required levels of accuracy. 

4.2.9 Reporting and recommendations: 

This document is prepared to report on the outcomes of the research. This addresses: 

i. Achievable accuracy from available data sources used in isolation and in 

combination; 

ii. Recommended software tools and capabilities; 

iii. Technical challenges and limitations of the approaches used. 
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The report also makes recommendations on future work and options for operational 

implementation. 

4.3 Methods of Feature Extraction Explored  

4.3.1 Overview of Methods Explored 

Several methods were explored for ways to extract fence-lines, either from Lidar, or Imagery or 

combined. The processing methods on their own had some things that worked and some things 

that did not, so the learnings from what worked and what did not was used to develop a 

processing workflow that was further used to create a GUI for Lidar processing and an 

Integrated Lidar and Image processing workflow. The various processes explored are listed in 

Figure 4-2 below and further details about the processes are discussed in Sections 4.3.2 to 

4.3.8. 

 

 

 

 

 

 

 

 

 

Figure 4-2: Various processes explored for fence-line extraction 
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4.3.2 Method using Power-line Extraction Parameters 

Power-lines vectors can be identified to be an entity closest to fence-lines in terms of narrow 

elongated features with specific height attributes. The key difference is that power lines are 

much taller than a typical fence line and can be extracted as a continuous linear feature with 

clear return numbers in Lidar data capture.  

There are usually very little differences in construction material for power-lines compared to 

fences, hardly any confusing vegetation running alongside it as in hedges running along fences, 

and geometrically, fence-line vectors are relatively shorter in length and often connected at 

right angle to each other or incomplete at the front of the houses.  

 

 

 

Figure 4-3: Workflow for Powerline Extraction Algorithm 
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was used for the final workflow which was developed in an open source IDL as well as an ENVI 

IDL version. 

 

Figure 4-4: Points in white represent fence but other unclassified points are classes as fence as well 

 

Figure 4-5: Fences detected using powerline algorithm showing false positives and omissions 
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4.3.3 Lidar Surface Difference Method 

Digital Surface Model (DSM) represents the elevation of features on the surface along with 

elevation of the ground, while Digital Elevation Model (DEM) represents the elevation of the 

ground in the scene.  

The fence-lines extracted from various methods have false positives along the ground such as 

kerb lines and other low lying features. One option to get rid of these false positives is to use 

remove the ground level information from the elevation models. This involves subtracting DEM 

from DSM to create a model that hold just the surface elevation information where each pixel 

represents the elevation of the underlying pixel (Figure 4-6). This can then be filtered according 

to the range of fence heights and exported.  

The problem with such an approach was due to software limitations where DEM and DSM were 

extracted at different pixel resolutions resulting in loss of information due to varying resolution. 

Additional steps were also required to bring them to the same resolution and there were 

difficulties in additional filtering for features other than fences. It was also difficult to cluster 

the point cloud to a single fence-line vector and to ensure that fences were selected and no 

other ancillary objects such as hedges. This process however had its merits with the surface 

difference model and this idea was implemented in the final workflow. 

 

Figure 4-6: Surface difference from DSM-DEM derived from Lidar 
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4.3.4 Lidar Surface Difference on Imagery Output 

Edges detected from image based feature extraction could be used in combination with surface 

difference model to improve the results of the extraction by removing noise. There is a marked 

improvement in the result as many false positives on the ground and within the building 

envelope are now eliminated as relatively accurate object heights can be used to eliminate 

ground features such as roadside kerbs (Figure 4-7). Parts of this method was used in the 

integrated image and Lidar based method developed as a GUI. 

 

Figure 4-7: (Left) Lidar surface difference model, and (Right) Extracted fence-lines on imagery 

4.3.5 Lastools Direct Height Filter Method 

Appendix 10.5 describes the approach used to filter out fence-line raster (Figure 4-8) using 

methods described in individual tools in Lastools documentation. These processes provide good 

results in raster and is necessary for developing part of the input raster for use in the Open 

Source IDL GUI developed for the project.  
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Figure 4-8: Fence-line raster filtered using Lastools 

4.3.6 Image Edge-Detection Method 

Various options for edge detection from imagery are available. Figure 4-9 shows the result of 

edge-detection operation on a single band of the RGB image. A large number of features, trees 

and most of the linear features are extracted from the image. There are some false positives 

that can be removed by superimposing either the building raster or building footprints (Figure 

4-9 Bottom). One disadvantage of this method is inconsistency of results based on image 

characteristics, capture of shadows, and displacement of fence-lines due to look angle. 

Parts of this method was used to develop the integrated Imagery and Lidar fence-line 

extraction method in the GUI. 
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Figure 4-9: (Top) Edge detection shows a large number of edges; and (Bottom) Buildings overlaid on the 
edges 
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4.3.7 Image-derived Point-Cloud Filter Method 

Dense point clouds can be generated using image matching methods using photogrammetric 

methods to take advantage of forward and side overlap in images and known acquisition 

geometry (Figure 4-10).  

One important reason for investigating this aspect in this research is it explore whether it will 

help to substitute and/or supplement aerial Lidar derived point cloud in areas where no such 

capture is available. An initial assessment was made to judge the suitability of utilising 

photogrammetric point cloud derived from aerial images.  

 

Figure 4-10: Dense point cloud generated from stereo-pair images by image matching 

 

Figure 4-11 shows the results of feature extraction of fence-lines using point clouds based on 

aerial imagery. Initial assessment of the resulting fence-line shows many false positives and far 

more omissions. For image-based point clouds, viewing geometry can cause difficulty in image 

matching. Furthermore, shadows often associated with the fence-lines and a lack of contrast 

with the immediate background cause issues with this extraction method. It was thus 

concluded to not explore this any further, and that while using imagery, image-based feature 

extraction may be better suited than derived point-clouds for feature extraction.  
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Figure 4-11: Feature extraction from aerial image derived point cloud 

4.3.8 Image Segmentation Method 

Image segmentation was explored in ENVI software using an ortho-rectified imagery. Object 

based Image analysis (OBIA) provided benefits such as additional segmentation parameters for 

image analysis such as texture, spectral and spatial attributes.  

The spectral brightness of the fence-lines, the spatial properties such as area, elongation and 

length of the features; and the texture of the image were used to extract the fence-lines (Figure 

4-12). The results varied between different areas and different parameters had to be 

determined for different areas based on several iterations of what worked for that image and 

area. The resulting fence-line extraction had false positives and omissions (Figure 4-13). 

Therefore, this method was not explored any further. 
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Figure 4-12: Image segmentation rule creation window with moving overview window 

 

 

Figure 4-13: Fence-line extracted using image segmentation with false positives and omissions 
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4.4 Considerations for Fences and Corresponding Algorithms 

From exploration of the various methods for feature extraction, it was determined to use parts 

of the methods that worked. It was thus necessary to define the fence characteristics that 

would be necessary to be considered for further development of an algorithm. This section 

discusses the characteristics of fences and how these characteristics are considered in the 

algorithm (Table 4-1). 

 Table 4-1: Fence-line characteristics and algorithm considerations 

Fence-line characteristics Algorithm consideration 

a. Fences are long and relatively thin features 

b. Fences may have gaps in data due to inherent 
gaps (gates etc.), visibility gaps (fence blocked by 
vegetation, buildings or sheds) 

1. Use an elongation ratio (length/width) threshold 

2. Select minimum length tolerance to eliminate 
segmented and spurious lines 

3. Use a maximum gap tolerance along identified 
fence-lines for line fitting 

3. Eliminate larger areas in the processing that are 
not a result of (large length value X small width 
value) 

a. Fences have hedges growing next to them; 

b. Fences can be made of hedges 

 

 

 

1. Use the RANSAC algorithm to select the most 
probable line with a maximum cluster distance 
threshold 

2. Utilise vegetation removal kernel radius 
threshold in 2D beyond which points are not 
considered 

3. Iterate to test if points eliminated previously can 
be included between the segments 

a. Fences generally have elevation ranging 
between 0.5m to 2.0m 

b. Fence-lines may be confused with other linear 
lines such as buildings, powerlines, road 

c. Fences may have high vegetation covering 

1. Eliminate lines formed on bare earth, buildings 
or high vegetation; 

2. Use a filter that selects point cloud between 
0.5m-2.0m for the analysis 

3. Identify and remove buildings, powerlines 

4. Identify and remove trees 
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a. Fences are usually in cardinal directions but can 
be any direction in between; 

b. Fence joins are close to 90 degrees 

1. Use directed convolution filters to identify edges 
in cardinal and diagonal directions (imagery); 

2. Calculate curvature to eliminate non-straight 
lines 

3. Eliminate joins with an angle greater than a 
specified threshold 

There are different types of fences (e.g. 
continuous paling fences, hedges, post and wire 
fences etc.) 

1. Different fences return different concentration 
of Lidar point clouds, so use different settings for 
line gaps etc. in the .json files 

a. In flat surfaces, fences usually have the same 
height throughout a single line; 

b. Cars etc. at a similar height range have a plane 
surface 

1. Use a z-component of plane fit over normal 
vector, i.e. plane fit over original point clouds 

2. Use a tolerance threshold to eliminate points 
outside a given z-plane 

3. For fences on sloping ground where the z-plane 
changes rapidly, not use this component 

 The choice of filter/kernel and its parameters used to detect the fence-line features can have 

varying degrees of influence on the accuracy of the extraction. After exploring the relative 

merits of the various aspects, the following factors were selected that formed the core of the 

algorithm development: 

• Maximum height above terrain to look for fence points 

• Minimum height above terrain to look for fence points 

• Minimum number of points in a cluster to be considered to be part of a fence 

• Distance between points to fit linear features 

• Maximum gap along fence to fit lines 

• Minimum length of fence-line segments  

• Kernel radius to remove vegetation near fence-lines and its threshold 

• Exclusion of points as fence-lines based on previous classification  

• Parameter for adding back a point if a line is subsequently detected 

• Distance threshold for points for fitting a plane (to extract fence-lines) 



46 

 

4.5 Workflow developed for Fence-line detection using Lidar 

A linear workflow was developed for the fence-line extraction. The philosophy behind the 

development of this workflow was to make it as semi/fully – automated as possible and also to 

provide users various options to choose algorithms and parameters that suited the available 

Lidar point-cloud density.  

Three parameter files were developed based on the point cloud density of the available data: 

Low/sparse density; Medium density; and High density, that broadly reflects real-life data 

capture scenarios. The workflow also caters for advanced users to modify fence-line extraction 

parameters as an iterative process to improve the overall extraction results. 

An important consideration in the design of the workflow (Figure 4-14) is to cater for varying 

quality and geographic coverage of the data that is likely to be used in a jurisdiction. Thus, 

variability in point densities was addressed by developing algorithms that is parameterised 

using a model that caters for three densities described in Table 4-2. The three different 

parameter files are dependent on the density of Lidar points per square metre (ppsm) and 

various other considerations (More details in Appendix 10.6).  

Table 4-2: Lidar Density vs. parameters to be used 

Lidar Density PPSM Range Terrain type JSON File to use 

Low > 4 ppsm Mostly Rural ParamSparseData.json 

Medium 4 – 20 ppsm Rural to Urban ParamMediumDensityData.json 

High < 20 ppsm Urban ParamHighDensityData.json 
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Figure 4-14: Workflow for Fence-line extraction using Lidar data 
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As the spatial extent of Lidar point-cloud coverage could be large, and to make allowances for 

various computational capacities, the algorithm provides an option to process these files by 

splitting them as rectangular processing grids defined by users to cater for the size of the area 

being used for fence extraction.  

The workflow is also designed to refine the result with a SVM based self-learning model that 

allows users to guide the extraction process by training the model with user identified correct 

versus incorrect feature extractions to refine the final output. 

The key steps in the workflow are described as follows: 

a. Select the input LAS file (or a collection of Las files), assess point-density which in turn 

would allow in the selection of the parameters of extraction; 

b. Split the LAS file into desired rectangular grid sizes and select a processing AOI 

c. Process the Lidar and extract fence-lines 

d. Review and refine the vectors and the training model and output the fence-line vectors 

 

4.6 Workflow for Fence-line detection using Integrated Imagery and Lidar 

The approach taken consists of multiple steps in order to derive line segments from imagery 

(Figure 4-15).  

Edge Detection: Using the Canny edge detection algorithm, edges can be extracted efficiently 

from imagery. The image was processed in tiles of 256x256 pixels at a time. The Canny 

algorithm returns many more edges than are desired to be included. Most notably, vegetation 

and textured roofs returns high concentrations of edges.  

Clustering: Clustering of adjacent (contiguous) pixels in the Canny edge detection output is 

performed next to identify and further process groups of pixels to see if they should be 

included or excluded. Each contiguous group of pixels is then passed in to the next step in the 

algorithm.  
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Figure 4-15: Workflow for Fence-line extraction using Ortho-imagery and Lidar Relative Elevation 
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Curve calculation: The amount of curvature is then calculated for each of the groups of inlier 

pixel locations computed in the previous step. The idea is to remove pixel groups that are too 

curved (i.e. vegetation, textured roof tops, etc.). The way the curvature is computed is to use 

the two nearest neighbours of each point (x, y), then compute the angle between the two 

vectors towards the two nearest points. For a straight line, this angle will be close to 180 

degrees, but for a curved section, this will be a smaller possibly closer to 90 degrees or even 

smaller. The amount of curvature is then calculated as the average angle for all the points in the 

given group. A threshold of 137.5 degrees was chosen here to only report pixel groups with a 

curvature angle larger than this value. The remaining pixel groups are shown in blue to the right 

in the figures below. 

Modified RANSAC line search algorithm: The standard RANSAC line fitting algorithm takes a 

collection of points and chooses random pairs of points to create possible line fits, then using a 

distance threshold to define inliers vs. outliers, it searches for the line that gives the highest 

number of inliers (meaning points within the distance threshold). In the modified version used 

here the pixel locations are translated in a contiguous group, from the previous step, into a set 

of coordinates (x, y) points. Now, instead of searching randomly, every point with all points 

closer than a given radius are grouped to use as the search space for line definitions. Inliers and 

outliers are computed. A minimum number of inliers is needed to proceed with the line 

segment. 

Vectorization: The inlier points (x, y) derived from the pixel locations and filtered in the 

previous step, are then converted into a line segment using a linear least squares fit of the 

remaining points.  

4.7 Summary 

This section outlined a research methodology for the project. Several methods of feature 

extraction were explored and based on that, a final workflow was developed for the 

development of a GUI using Lidar and integrated Lidar and Imagery inputs. 
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5 Data Processing and Evaluation of DCDB Upgrade 

5.1 Background 

This chapter addresses objective two of this research and it evaluates the contribution of the 

various data processing options explored in this research and the workflow developed as a 

result for the upgrade of cadastral data.  

The discussions in this chapter can be described in the following distinct steps: 

• Details the algorithm development, Lidar and imagery GUI development and SVM 

implementation;  

• Assesses the results of the data processing for various geographic scenarios;  

• Evaluates the feasibility of DCDB upgrade using the extracted fence-lines; and finally 

• Assesses the results of various Lidar resolutions for fence-line extraction. 

5.2 Fence-line Extraction Algorithm Development 

5.2.1 Algorithm Processing Stages – Lidar 

An algorithm was developed to extract fence-lines from Lidar data based on the factors that 

were identified. The intention was to add (or discard) additional factors based on the results as 

it was difficult to be precise on the actual vs estimated influence of each parameter through the 

extraction process. The final output was based on a probabilistic value for a particular line 

segment being a fence or otherwise.  The algorithm includes multiple steps described below in 

Steps 1 to 10 and Table 5-1, while details on how to run the GUI is in Appendix 10.7. 

• Step 1 – Combine/Subset LAS files into a Lidar project. Split Lidar dataset by area based 

on a set of Lidar files in .LAS format in combination with a shapefile containing polygons 

defining the areas of interest. 
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• Step 2 – Point cloud classification and DEM extraction. Create surface model and 

topographic shaded raster image. This step also involves classifying terrain (ground) 

points, vegetation (trees), and buildings, as well as generating a bare earth DEM raster. 

• Step 3 – Create DEM terrain raster representation and a relative height raster output. 

This creates a height raster relative to the bare earth DEM at a higher resolution than 

the bare earth DEM. 

• Step 4 – Hillshade output. This is creating a hillshade raster that is useful for 

visualization purposes only. This raster representation is not used for the fence 

extraction algorithm. 

• Step 5 – Process fence specific algorithm in tiles to allow arbitrary project size. Points 

are processed in small tiles to facilitate locating of fence-line segments. 

o Step 5a – Filter points based on height range relative to DEM – apply height 

thresholds relative to ground. 

o Step 5b – Filter points based on classification (unclassified or trees). Apply class filter 

to exclude terrain points and buildings, include vegetation and unclassified points. 

o Step 5c – Perform distance based clustering to group points that belong to the same 

structure. 

o Step 5d – Remove tree points based on circular coverage criteria - for each cluster, 

remove circular objects such as trees. 

o Step 5e – RANSAC line finding and fitting algorithm used to extract line segments 

from points. For each cluster, perform a line fit (in X/Y, ignoring Z) and remove points 

that are too far from the line. 

o Step 5f – Remove clear non-fence points based on cluster dimensions (remove small 

clusters). For each line, check length and number of points against minimum 

thresholds. 
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• Step 6 – After looping over all tiles, combine line segments that have the same direction 

and are Adjacent. Join line segments based on proximity and direction avoid gaps from 

tiled processing in previous steps. 

• Step 7 – Output all line segments along with statistical metrics for the points in each line 

segment. Filter short line segments based on minimum length parameter. 

• Step 8 – Compute probability for whether each line segment is a fence or not a fence. 

This step uses an SVM (support vector machine) model to calculate the probability that 

a line segment is a fence. 

• Step 9 – Output all line segments along with the probabilities. 

• Step 10 – Output filtered line segments based on a probability threshold or manual 

edits. 

Table 5-1: Algorithm parameters specific to fence extraction 

Parameter Description 

Maximum_Height Maximum height above terrain to look for fence points. 

Minimum_Height  Minimum height above terrain to look for fence points. 

Minimum_Num_Points  
Minimum number of points in a cluster to be considered part 
of a fence 

Perpendicular_Tolerance  Line fitting distance threshold. 

Maximum_Gap  Maximum gap along fence during line fitting. 

Minimum_Length  Minimum length of a fence-line segment. 

Veg_Removal_Kernel_Radius  
Kernel radius for filtering high coverage clusters of points 
(meters) before line fitting. 

Veg_Removal_Grid Number of grid cells in each dimension (2D) 

Veg_Removal_Maximum_Cov
erage  

Maximum coverage percentage, above which points are 
removed from consideration. 

Expand_Point_Search  
Boolean parameter to allow adding back in previously 
removed points after line fitting (default: false). If set to true, 
partial fence-line detections tends to become more complete 
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at the expense of adding false positives. 

Plane_Threshold  
Distance threshold used for plane fitting of points (plane fit is 
used as statistical metric). 

Plane_HReject  
Boolean parameter indicating that points found to be on a 
near horizontal plane should be removed from consideration 
prior to line fitting. 

Cluster_Distance  
Distance in meters used to group points belonging to the same 
object. 

Classes  
A list of classes (from a previous classification) used when 
looking for fence points (terrain and buildings should be 
excluded). 

 

Discussion: Considering the output of the fence-line extraction, it was considered more 

important to maximise the true positive detection rate than removing all false positive 

detections.  

While it was found that including all the vegetation in addition to the unclassified points 

resulted in a much better detection of fence-lines in suburban areas, but it also resulted in 

many false positive detections in wooded areas. Thus, a consideration for the algorithm was to 

remove points that are part of a tree and should be excluded from the fence-line extraction 

process.  

The algorithm uses a circular kernel around each point and checks the coverage within the 

circle and excludes circles that have a high coverage. This is based on the assumption that 

fence-lines do not have a large amount of coverage when considering circular sub-regions. This 

greatly reduced the computation needed to detect line segments but because of the radius and 

coverage threshold selected for the tree reduction filtering, smaller bushes still remain after 

filtering. Points on the larger tree are removed, however this same algorithm has been found to 

remove points at the intersection of fences. 
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5.2.2 Fence-line detection using Integrated Imagery and Lidar 

Many of the steps developed for Lidar was used in the integrated process using both Imagery 

and Lidar, especially after the point clusters were created to begin the process of line 

segmentation. 

The imagery was used to detect all the edges using Canny edge detection algorithm. As image 

processing is computationally intensive, small tiles of 256 pixels was used. This process created 

edges for everything in the image and was much more than necessary. Clusters of points were 

identified based on adjacency and vegetation edges were removed using curve calculated for 

each such cluster. RANSAC line fitting algorithm clustered line fits based on a threshold inlier 

value, and the results were exported as vectors which were filtered initially based on Lidar 

relative elevation and probabilistically by SVM. 

In the results below from Figure 5-1 to Figure 5-6, discusses the various issues with fence-line 

extraction using imagery. The extracted line segments are shown in blue on the right and 

overlaid on the original imagery on the left in the figures below, while the Canny edge detector 

output is shown in the centre image as white pixels below. 

 

 

 

Figure 5-1: Trees causing many edges, but no straight line edges 
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Figure 5-2: Roof texture causing many edges 

 

Figure 5-3: Shadows and roads are detected in this case 

 

Figure 5-4: While the fence on the left is correctly identified, the algorithm also finds many other lines on 
the building 
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Figure 5-5: More buildings as well as some fence lines are detected here 

 

Figure 5-6: SVM filtering results in lines in green to be selected as fences, and lines in red are rejected 

 

Discussion: This approach extracts fence-line segments effectively, but unfortunately, it also 

extracts an even greater amount of other linear features in the imagery (Figure 5-6). For the 

Integrated Imagery-Lidar based approach a different SVM model was chosen, but in this case, 

the same attributes are not readily available, as there is no height information at pixel level. 

The level of accuracy with this type of classifier depends heavily on the amount of training data, 

and the more diverse the appearance of a fence line is, the more data is needed to successfully 

train a classification model. 
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5.2.3 Quality Assessment Tool for Fence-line extraction 

A quality assessment tool was developed to evaluate the results of the fence-line extraction. 

The tool initially loads the fence-lines for visual quality assessment of the fence-line extraction. 

It is also used for SVM training and the manually edited fence-lines can be used as filtered 

output. Figure 5-7 shows the various options explored for using background image for visual 

assessment. The top-left image is the intensity, the top-right the DSM, the bottom left is the 

Lidar classified image and the bottom right is the hill-shading of the Lidar.  

  

  

Figure 5-7: Various options explored for background imagery to be used in visual quality assessment, 
manual editing and SVM training 

The hill-shaded (topographic shaded) raster representation created from the Lidar data can be 

useful for manual inspection of fence-line detections made by the algorithm. This is especially 
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true if imagery is not available, or if imagery is not from the same flight as the Lidar data. In 

cases where imagery was not collected at the same time, it could be impossible to know if a car 

was present or if a new building was constructed. Using the hillshade representation to inspect 

fence features can be very useful in these cases. The hillshade representation has a clear 

advantage over a height raster, in that fence lines tend to display clearly unless obstructed by 

vegetation. Figure 5-8 shows the background used for non-ENVI version and fence-line extract 

overlaid on imagery. 

 

  

Figure 5-8: (Left) Aerial imagery background for non-ENVI version and (Right) fence-line overlay 



60 

 

 

 

Figure 5-9: (Left) Probability values shown for each line segment; and (Right) SVM training model 
creation and accuracy reporting 

The left image in Figure 5-9 above shows the probability values displayed for each line segment 

which changes to 0 if the line is chosen to be non-fence and changes to 1 if the line is selected 

as a fence. The image on the right shows the SVM model training and creation window and it 

also reports on the accuracy of the fence-line extraction process.  
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5.2.4 SVM implementation in ENVI 

 

This section is adapted from Harris Geospatial website for implementing a SVM in ENVI proprietary 

software (http://www.harrisgeospatial.com/docs/BackgroundSVM.html). 

Support Vector Machine (SVM) is a supervised classification method derived from statistical 
learning theory that often yields good classification results from complex and noisy data. It 
separates the classes with a decision surface that maximizes the margin between the classes. 
The surface is often called the optimal hyperplane, and the data points closest to the hyperplane 
are called support vectors. The support vectors are the critical elements of the training set. 
 
The following outlines the steps for implementing a SVM in ENVI software with soft margin and 

uses a pairwise classification strategy for bilinear classification: 

• Select the Kernel Type (different kernels have different options). The mathematical 

representation of each kernel is listed below: 

Linear K(xi,xj) = xiTxj 

Polynomial K(xi,xj) = (gxiTxj + r)d, g > 0 

RBF K(xi,xj) = exp(-g||xi - xj||2), g > 0 

Sigmoid K(xi,xj) = tanh(gxiTxj + r) 

Where: g is the gamma term in the kernel function for all kernel types except linear; d is 

the polynomial degree term in the kernel function for the polynomial kernel; and r is the 

bias term in the kernel function for the polynomial and sigmoid kernels. 

If the Kernel Type is Polynomial, set the Degree of Kernel Polynomial (range 1-6, default = 

2). For a Polynomial or Sigmoid kernel type, specify the Bias in Kernel Function (default = 

1.00, which is the "r" term in the above kernel functions). For a Polynomial, or Radial Basis 

Function, or Sigmoid kernel type, set the Gamma in Kernel Function to 0.01 (the "g" term 

used in the above kernel functions, default = inverse of the number of computed 

attributes). 

• Specify the Penalty Parameter for the SVM algorithm to use. This value is a floating-point 

greater than 0.01, the default is 100.0. The penalty parameter prevents over-fitting and 

allows a degree of misclassification, which is important for non-separable training sets. 

• Select a Threshold value to indicate level of confidence that the closest segments of any 

given class represent the same class as that segment.  
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5.2.5 SVM implementation in the GUI 

This section details the SVM implementation in the GUI tool and the workflow. Specific 

filenames have been left as is so that it is easier to relate to the actual implementation when 

running the processes. 

It is important to select clear training examples when creating a SVM model. It could be a good 

strategy when creating a new model to not use a prediction model at all when running the 

processing. This way all line segments start out as 0.5 probability. The segments can then be 

marked with only the segments that is required to use as examples for fence/non-fence (clear 

examples). After marking a roughly even amount of examples of fence/non-fence, the 

probability thresholds are set to 0.1, 0.9 respectively in the GUI to omit the unmarked examples 

(0.5). 

The SVM is implemented after points in a cluster are converted to a line-segment using a 

RANSAC line fit algorithm. Each line segment is assigned an attribute vector consisting of ten 

attributes. The attribute vector is used as input to the SVM prediction model. The attributes are 

computed from the following: 

i. Length in X-Y 

ii. Linear least squares fit coefficient (along best RANSAC line) 

iii. Linear least squares fit coefficient (perpendicular to best RANSAC line) 

iv. Chi Square error metric of linear least square fit of original points. 

v. Covariance matrix of linear fit of original points (4 coefficients) 

vi. Z-component of plane fit normal vector (plane fit to original points) 

vii. Percentage of points within tolerance threshold of plane fit (low for vegetation, high for 

flat structures) 

 

The feature vectors are stored in “FenceFeatures.tif” which is a [10, NumLineSegments] matrix. 

The points in each individual line segment are stored in “FenceGeometry.bin”. The probabilities 

as predicted by the SVM model are stored in “FencesProb.float” which consists of 
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NumLineSegments 4-byte floating point values. If this file does not exist at the time the 

“Review” tool is started, then the review tool will create the file and populate it with all 

(NumLineSegments) 0.5 values. After each edit made in the review tool, this file is updated with 

the corresponding probability (1.0/0.0). 

When creating a new SVM model this file is used as the input, and thresholds can be set to 

include a wider or narrower range of probabilities when selecting features. The SVM model 

generation then reads the “FenceFeatures.tif” and selects the subset based on the probability 

range selected. 

The process of SVM model creation results in two files that describes how to apply the SVM 

prediction model to future processing runs. The first file is the scaling (or normalization) file. It 

is a TIFF file containing [10, 100] containing ordered (percentile) values for each attribute across 

the training data set used to train the model. It is recommended to have at least 100 examples 

when creating a model, generally, the more the better, but each example line segment should 

be carefully selected knowing that there aren’t any actual fence segment in the red group, or 

any non-fence segments marked green. The other file is a .model file which contains the SVM 

weights and biases used internally. The SVM library that is called from IDL passes in the model 

file name when computing the predictions from the normalized attribute vectors. 

 

5.2.6 Implementation Versions of the GUI 

One of the key consideration for this project is to develop a software product for fence-line 

extraction that can be used without any dependency on proprietary software. In order to 

achieve this it was proposed to have two versions of the software from an end-user point of 

view: 

• ENVI IDL based Software Version: This version is designed and implemented for users 

that either own or have access to ENVI and ENVI Feature Extraction Licenses. It also 

requires a runtime version of IDL. The major advantage to the end-users is that it 

provides complete capability of the COTS product and provides an IDL-based 
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development environment for future enhancements and provides complete GUI based 

ease of use with minimal input from the user. ENVI and ENVI FX license are used for file 

access, DEM (bare-earth) raster creation, building, vegetation, and power-line 

classification. This means that a set of raw (unclassified) LAS files can be provided in 

conjunction with a shapefile containing processing polygons as input for processing 

while these would have to be created manually for the open source IDL version. 

• IDL based Software Version: This is the open source implementation of the software. 

The IDL Virtual Machine (IDL VM) is a runtime version of IDL that can execute IDL '.sav' 

files without an IDL license.  It runs on all IDL-supported platforms and does not require 

a license to run. IDL Virtual machine is freely downloadable product and runs the .sav 

file that is developed as part of this implementation. The key difference with the ENVI 

based software version is that, when ENVI is not licensed, the application behaves 

differently. It expects one or multiple classified LAS files. The majority of processing 

steps remain the same and it is expected that users will make use of any open source 

software to classify the LAS files to generate the classes required as input to this install.  

Details of IDL VM is provided in the following link: 

https://www.harrisgeospatial.com/Support/SelfHelpTools/HelpArticles/HelpArticles-

Detail/TabId/2718/ArtMID/10220/ArticleID/17309/The-IDL-Virtual-Machine.aspx 

 

5.3 Assessment of Algorithm for Fence-line Extraction 

5.3.1 Assessing the algorithm and data for rural areas 

The assessment of the algorithm performance in urban areas is done in Section 5.5 as part of 

the review of various Lidar resolutions. This section reviews the performance of the algorithm 

in rural areas. The rural area of Toowoomba had sparse Lidar data of 2-3ppsm so the parameter 

.json file was chosen accordingly. The fence characteristics of rural areas are usually chain-wire 

fences or posts or rail on posts (Figure 5-10). The algorithm has performed well for fence-line 

detection in rural areas (Figure 5-11 and Figure 5-12). 

https://www.harrisgeospatial.com/Support/SelfHelpTools/HelpArticles/HelpArticles-Detail/TabId/2718/ArtMID/10220/ArticleID/17309/The-IDL-Virtual-Machine.aspx
https://www.harrisgeospatial.com/Support/SelfHelpTools/HelpArticles/HelpArticles-Detail/TabId/2718/ArtMID/10220/ArticleID/17309/The-IDL-Virtual-Machine.aspx
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Figure 5-10: Example fence image in rural areas 

 

  

Figure 5-11: (Left) Lidar on fences and (Right) fence-line extraction 
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Another example area Detected fence-lines before filtering 

  

Fence-lines after SVM filtering Example of SVM filtering (blue lines filtered out) 

Figure 5-12: Example of rural fence-line extraction and SVM filtering 
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5.3.2 Assessing the feature extraction for Geiger Mode Lidar 

A scene of Geiger mode Lidar was made available to the project for a location in USA. The site is 

558m x 155m in the east coast of USA. Figure 5-13 left show the study area and right shows the 

point-cloud visualisation and the portion of the scene for which fence-lines were detected. The 

Geiger Mode Lidar was of 32ppsm, Figure 5-14 shows the fence-lines extracted from this type 

of Lidar. While the scene was too small and the fences of a different characteristics to the one 

in the parameter file, Geiger Mode Lidar provides a good option for fence-line detection. 

  

Figure 5-13: (Left) Study Area in USA; and (Right) Geiger Mode Lidar point cloud 

  

Figure 5-14: (Left) Unfiltered fence-lines and (Right) Filtered fence-lines extracted from Geiger Mode 
Lidar 
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5.3.3 Assessing the algorithm and data for Adelaide 

Lidar data, Imagery and DCDB extract was made available for testing for Adelaide, South 

Australia. The Lidar data was of around 20ppsm and was reported to be captured at the same 

time as the aerial ortho-rectified imagery. The digital cadastral data from Adelaide had accuracy 

codes provided in it which was interpreted by accessing the South Australian government 

departmental website. Figure 5-15 shows the fence-line extract using the algorithm and 

medium density parameters. 

 

 

Figure 5-15: Adelaide Lidar processing (Top) Unfiltered fence-lines (Bottom) Filtered lines  



69 

 

From visual inspection of the extracted fence-lines, it could be seen that the extract was not 

satisfactory. Further, close-up views in Figure 5-16 and Figure 5-17 reveal that regardless of the 

reported accuracy of the digital cadastre, the fence-line extract never matched the DCDB but 

rather matched the fences visible on the image. The image appeared to have been ortho-

rectified very well using possibly the same Lidar and control points, yet it never matched the 

digital cadastre regardless of the accuracy of the cadastre. The only conclusion that can be 

drawn is that there is a systematic shift between the Lidar and Imagery capture with the digital 

cadastre. The reasons or magnitude of the shift were not explored to limit the scope of the 

project.  

 

 

Figure 5-16: DCDB metadata states high accuracy but Lidar fence-lines match imagery not DCDB  
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Figure 5-17: DCDB metadata states low accuracy, still Lidar fence-line extract matches imagery not DCDB 

 

5.4 Assessment of feasibility of DCDB upgrade using Fence-lines 

After the extraction of the fence-line it was necessary to explore whether these lines could be 

used to adjust the digital cadastre. While it was necessary to test the digital cadastre where the 

geo-positional accuracy was already very low, the issue was the availability of Lidar in those 

areas. Similarly, where Lidar was available the geo-positional accuracy of the digital cadastre 

was very high.  

In Morayfield the reported geo-positional accuracy of the digital cadastre was about 0.1m in 

most areas. It was therefore decided to distort the digital cadastre for Morayfield to simulate a 

low accuracy cadastre. The distortion was in rotation, translation and scale of around 63m 

which is the highest geo-positional inaccuracy in the DCDB in Queensland at the moment. 

Figure 5-18 through to Figure 5-21 demonstrated that it was possible to block adjust the 

distorted cadastre based on the extracted fence-lines. Accuracy aspects and the time taken are 

explored in later chapters. 
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Figure 5-18: Simulated distortion of the digital cadastre 

 

Figure 5-19: Link lines between extracted fence-lines and distorted cadastre for rubber-sheeting 
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Figure 5-20: Variable distance and direction of the link lines due to rotation, translation and scaling of 
the distorted cadastre 

 

Figure 5-21: The DCDB was able to be block adjusted to its original high accurate position using the 
extracted fence-lines 
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5.5 Assessment of Various Lidar Data Resolutions for Fence-lines 

The assessment for suitability of various Lidar data resolution expressed as points per square 

metre for fence-line extraction was done as shown in Figure 5-22. The direction of capture was 

evaluated for two purposes, firstly to test if the orientation of the Lidar flight lines affected the 

number of points falling on the fence tops, and secondly to test whether the developed 

algorithm had a bias towards any direction of data capture. 

 

 

 

 

 

Figure 5-22: Assessment of various Lidar resolutions and capture directions for fence-line extraction 

5.5.1 Evaluation of high resolution Lidar 

Twenty overlapping Lidar scenes on the southeast corner of the Morayfield area of interest 

were selected. As each scene is 8ppsm, so the resulting average density of Lidar was around 

160 in many parts of the scene. As the point density was high, the direction of the flight lines 

was not evaluated for the high-resolution composite scenes. Filtered fence-lines were extracted 

using high-resolution parameters and default SVM that was then overlaid on imagery to 

examine the number of fence-lines detected, and their errors of commission and omission. 

Figure 5-23 shows that visible fence-lines have been extracted for most of the features in the 

area. 

 

Combined all scenes 

East-West Flightline 

North-South Flightline 

Visual Assessment 

Low Res (1 scene) 

Mid Res (3 
overlapping scenes) 

High Res (20 
overlapping scenes) 
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Figure 5-23: Fence-line extraction from high-resolution extraction shows a large percentage of visible 
fence-lines extracted 

 

5.5.2 Evaluation of medium resolution Lidar 

For this evaluation three scenes each in the vertical and horizontal flight direction were used 

and a final combined extraction performed for all six images together.  
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Figure 5-24: Fence-lines extracted from medium resolution Lidar for (Top) Horizontal and (Middle) 
Vertical directions of flight; and (Bottom) the combined Lidar results 

 

From Figure 5-24 it can be seen that medium resolution Lidar is capable of delivering similar 

results compared to high resolution Lidar however there are more errors of commission. From 

the (Top) image for horizontal flight-lines it can be seen that there are more horizontal fences 

extracted and similarly more vertical lines for vertical direction of capture for (Middle) image. 

The combined extraction (Bottom) shows both horizontal and vertical fence-lines captured, 

however there are still some errors of commission compared to the high resolution feature 

extraction. 

 

5.5.3 Evaluation of low resolution Lidar 

For this evaluation, one scene of 8ppsm in each of the two directions are considered low 

resolution and the combined feature extraction in the third stage serves to evaluate the effect 
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of direction on the data points falling on fences as well as the directional bias of the algorithm 

(Figure 5-25).  
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Figure 5-25: Fence-lines extracted from low resolution Lidar for (Top) Horizontal and (Middle) Vertical 
directions of flight; and (Bottom) the combined Lidar results 

The results show that the low resolution Lidar data extracts less fence-lines compared to the 

previous two. There are some errors of commission and more errors of omission. The 

combination provides some added fence-lines that are extracted, however they are not 

adequate for a DCDB block adjustment. 

5.6 Summary 

The algorithm that was developed performs better than expected. The majority of the missing 

fence-lines are due to vegetation and small buildings close to a fence, more often a partial 

fence-line is detected, rather than a complete miss.  

From the discussions in this chapter it was found that Lidar data should be collected with 

variations in flight pattern, point densities and different time of year for vegetation on or off. 

More experimentation is required with changing algorithm parameters to find optimal settings 

as well as adding other false positive reduction strategies, for example, specifically look for cars 

or other common objects.  
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6 Accuracy Achievable 

6.1 Accuracy of Lidar Data 

Lidar data was validated using ground truth obtained from GPS field survey using Lastools for 

data shown in (Table 6-1 Top). The results in (Table 6-1 Bottom) show that with an RMSE of 

0.045, the Lidar data was within the vertical limits of accuracy as per the ASPRS Guidelines for 

Vertical Accuracy Reporting of Lidar Data (Flood 2004) 

Accuracyz = 1.96*RMSE= 0.088,  

Which is within limits of the recommended 0.150. 

Table 6-1: Lidar data validation using GPS field survey coordinates 

Stn. GPSEasting GPSNorthing GPSZ LIDARZ Diff 

PM160643 494144.660 7000577.050 53.779 53.746 -0.033 

PM160753 494764.765 7001017.771 59.348 59.438 0.090 

PM165154 494900.611 7000646.300 58.029 58.096 0.067 

TGT1 494903.245 7000645.653 58.100 58.103 0.003 

TGT2 494228.762 7001027.850 51.817 51.838 0.021 

TGT3 494604.607 7001323.800 51.500 51.526 0.026 

TGT4 494766.851 7000993.469 59.753 59.777 0.024 

TGT5 494142.412 7000575.016 53.772 53.809 0.037 

 

Avgabs  RMS Stddev Average  Skew 

0.0377410 0.0459019 0.0376782 0.0294074 0.0331676 
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6.2 Accuracy of Filtering using SVM 

A probability is computed for every extracted line segment using the default prediction model. 

Segments that are incorrectly classified can be edited (re-assigned) by simply clicking on the line 

segment. There are three states when clicking on a line segment: original probability (as 

displayed in Figure 5-9 left), assigned non-fence (0.0), and assigned fence (1.0).  

When clicking on “Test Model” (lower right button in Figure 6-1), the table is updated with the 

predicted vs. labelled (actual) counts. In this case below, there are 459 line segments that are 

labelled non-fence, and 509 line segments that are labelled fence. The two rightmost columns 

in Figure 6-1 are defined as the Confusion Matrix.  

The following statistics can be computed from the Confusion Matrix (Table 6-2 and Table 6-3). 

 

Figure 6-1: Example SVM Training Window 
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Table 6-2: Confusion Matrix from SVM Training 

  Predicted 

  Non-Fence Fence 

Actual 
Non-Fence 459 (TN) 36 (FN) 

Fence 111 (FP) 398 (TP) 

 

Table 6-3: Classification metrics from the Confusion Matrix 

Class 1 (non-fence) Class 2 (Fence) 

True Negative (TN): 459 False Negative (FN): 36 

False Positive (FP): 111 True Positive (TP): 398 

Precision:  0.80526 Precision:  0.91705 

Recall:  0.92727 Recall:  0.78193 

F1 Score:  0.86197 F1 Score:  0.84411 

 

Where: 

True Positive (TP): When the SVM predicts a line is a fence, and it is an actual fence-line (Fence – 
Fence Matrix) 

False Positive (FP): When the SVM predicts a line is a fence, but it is not a fence-line (Fence – Non-
Fence Matrix) 

True Negative (TN): When the SVM predicts a line is not a fence, and it is not a fence-line (Non-
Fence – Non-Fence Matrix) 

False Negative (FN): When the SVM predicts that the line is not a fence but it is actually a fence-line 
(Non-Fence – Fence Matrix) 

Precision: When the SVM predicts that the line is a fence or a non-fence, this is a measure of how 
often it is done:  

𝑇𝑁

(𝑇𝑁+𝐹𝑃)
  or  

𝑇𝑃

(𝐹𝑁+𝑇𝑃)
 

Recall: When the lines are identified as a fence, how often is it an actual fence or when it is 
identified as non-fence how often is it not fence:  

True positive rate =
𝑇𝑃

(𝐹𝑃+𝑇𝑃)
; True negative rate = 

𝑇𝑁

(𝑇𝑁+𝐹𝑁)
 

F1 Score: A measure of a test’s accuracy, it is the harmonic mean of precision and recall: 

2 𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
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The recall and precision statistics will vary depending on the following factors: 

A. The geographic area being evaluated, for example, a rural or forested area will give a 

different result than an urban or suburban area. 

B. The point density and quality of the Lidar data collection. 

C. The parameters used as input to the algorithm. As part of this effort, three sets of 

parameters were created targeting high, medium and low density Lidar collection. However, 

there is an opportunity to further refine individual algorithm parameters to obtain better 

results depending on the Lidar data characteristics. 

Note that by changing algorithm parameters such as increasing the CLUSTER_DISTANCE, or 

increasing the PERPENDICULAR_TOLERANCE, the number of detections can be increased at the 

expense of also increasing false positive detections. This would have the effect of increasing the 

recall percentage and also decreasing the precision. On the other hand, decreasing the same 

parameter values would lead to increased precision at the expense of lowering the recall. 

 

 

 

 

6.3 Accuracy of Extracted Fence-lines 

The developed workflow has shown promising results, with extraction accuracy that allows for 

an accurate adjustment of the existing cadastre. Fence-lines extracted from Lidar have a 

combined horizontal accuracy of 0.282m (Table 6-4 bottom) while fence-lines extracted from 

imagery have a combined horizontal accuracy of 0.258m (Table 6-5 bottom). Although the 

accuracy of image-based feature extraction appears to be better, the number of fence-line 

segments extracted from Lidar is significantly higher in number. 
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Table 6-4: Computing the accuracy of Fence-line extraction from Lidar (Top and Bottom table) 

XDCDB YDCDB XLidar_Fence YLidar_Fence XError YError 

494379.764 7000980.742 494379.687 7000979.786 0.077 0.956 

493672.230 7000754.308 493672.208 7000754.305 0.022 0.003 

493714.640 7000687.245 493714.551 7000687.375 0.089 -0.130 

493854.982 7000651.756 493854.896 7000651.368 0.086 0.388 

494255.721 7000606.390 494255.761 7000606.279 -0.040 0.111 

494279.534 7000602.681 494279.644 7000602.585 -0.110 0.096 

494531.295 7000784.481 494531.388 7000784.400 -0.093 0.080 

494488.371 7001390.521 494488.139 7001390.831 0.232 -0.309 

494486.443 7001350.210 494485.988 7001350.145 0.456 0.065 

494485.931 7001338.840 494485.555 7001338.787 0.376 0.052 

494513.212 7001343.901 494513.232 7001343.899 -0.020 0.002 

494484.893 7001316.867 494484.991 7001316.802 -0.098 0.065 

494471.641 7001306.481 494471.550 7001306.356 0.091 0.126 

494302.425 7001240.759 494302.432 7001240.654 -0.007 0.104 

494276.420 7001121.264 494276.085 7001121.124 0.335 0.140 

494635.551 7000995.760 494635.453 7000995.721 0.098 0.039 

494044.599 7000915.606 494044.560 7000915.450 0.039 0.156 

494585.267 7000754.505 494585.408 7000754.476 -0.141 0.029 

494685.670 7000597.796 494685.414 7000597.907 0.256 -0.111 

494445.236 7000797.994 494445.229 7000797.984 0.007 0.010 

494422.577 7000731.933 494422.660 7000731.913 -0.083 0.021 

493795.802 7000740.007 493795.726 7000739.939 0.076 0.067 

494124.036 7000903.636 494123.960 7000903.587 0.076 0.049 

493678.176 7000793.847 493678.235 7000794.026 -0.059 -0.179 

494653.947 7000985.521 494653.886 7000985.694 0.061 -0.173 

494701.900 7001035.506 494701.696 7001035.608 0.204 -0.102 

494682.284 7000997.971 494682.330 7000997.826 -0.046 0.145 

 

RMSEx  
 

    0.166 

RMSEy 
  

 

0.228 

Horizontal Accuracy     0.282 

 

Table 6-5: Computing the accuracy of Fence-line extracted from Imagery & Lidar (Top and Bottom table) 

= √𝑅𝑀𝑆𝐸𝑥
2 +  𝑅𝑀𝑆𝐸𝑦

2 

= √
∑ (𝐷𝐶𝐷𝐵𝑖 − 𝐹𝑒𝑛𝑐𝑒𝑖)2𝑛

𝑖=1

𝑛
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XDCDB YDCDB XImage_Fence YImage_Fence XError YError 

494524.142 7000773.804 494524.173 7000773.873 -0.032 -0.069 

494531.295 7000784.481 494531.400 7000784.393 -0.105 0.088 

494635.551 7000995.760 494635.243 7000995.855 0.308 -0.095 

494585.267 7000754.505 494585.346 7000754.510 -0.078 -0.004 

494544.389 7000777.202 494543.834 7000777.316 0.555 -0.113 

494445.236 7000797.994 494445.267 7000798.039 -0.030 -0.045 

494422.577 7000731.933 494422.645 7000731.825 -0.067 0.109 

494653.947 7000985.521 494653.696 7000985.685 0.251 -0.164 

494682.284 7000997.971 494682.164 7000998.107 0.120 -0.137 

 

RMSEx  
 

    0.237 

RMSEy 
   

0.102 

Horizontal Accuracy 
    

0.258 

 

 

 

 

 

 

 

 

 

 

= √𝑅𝑀𝑆𝐸𝑥
2 +  𝑅𝑀𝑆𝐸𝑦

2 

= √
∑ (𝐷𝐶𝐷𝐵𝑖 − 𝐹𝑒𝑛𝑐𝑒𝑖)2𝑛

𝑖=1

𝑛
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6.4 Sources of Error in Fence-line extraction 

The fence extraction process is susceptible to a few different types of errors. Broadly, the 

categories of errors are (a) missed fences, (b) inaccurate line direction, and (c) false positive 

detections. This section discusses the errors in Lidar fence-line extraction process. 

6.4.1 Missing Fence-lines 

For missing fence lines, the most prevalent causes are small sheds/buildings or unusual shaped 

structures in the same elevation range that can lead to too many cluster of points confusing the 

line detection, thus causing a real fence line to be missed (Figure 6-2). Trees or significant 

vegetation close to fences can also have the same effect of confusing the line detection (Figure 

6-3). Additionally due to the use of tree removal algorithm, fence intersection points can cause 

a similar problem in that there is too much coverage over a circle causing points to be removed 

from consideration (Figure 6-4). 

 

Figure 6-2: Small building/shed (blue X) is causing a section of the fence to be missed 
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Figure 6-3: An example of fence line segments missed due to vegetation 

 

 

Figure 6-4: Missing fence intersection lines because of circular coverage reduction of point cluster by the 
tree removal algorithm 
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6.4.2 Inaccurate Line Direction 

The second category of error is due to inaccurate fence line direction normally caused by the 

vegetation resulting in the line fitting to be skewed towards the vegetation. As shown in Figure 

6-5 the line represented in red over the fence is pointing towards the vegetation. This is prior to 

the final filtering step leading to the dashed red lines being removed. 

 

 

Figure 6-5: Fence-line being skewed towards a cluster of vegetation 

 

6.4.3 False Positives 

The last category of errors is false positives. The most common causes of false positives are 

cars, vegetation, and to a lesser extent buildings. Vegetation misclassified as a fence line is 

more prevalent when processing lower density Lidar datasets. This type of misclassification is 

rare in the highest density Lidar test dataset. Figure 6-5, Figure 6-6 and Figure 6-7 show some 

examples of false positive errors. 
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Figure 6-6: An example of parked cars being misclassified as a fence line is shown here, (blue arrow) 

 

Figure 6-7: An example of the sides of a building being misclassified as a fence line (not common in Lidar 
extraction but very common in image-based extraction) 
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6.5 Summary 

This chapter discussed the accuracy aspects of the data input and data output, as well as the 

sources of error. Accuracy assessment of input Lidar data based on GPS field survey confirmed a 

published method of post data capture assessment of Lidar data as well as confirmed that the 

data capture for this project over Morayfield was of a very high vertical accuracy.  

Next, accuracy parameters obtained from SVM training tool was discussed in detail with 

explanations on how to interpret the results reported by the SVM training tool.  

Further, accuracy of fence-line extractions for features obtained from Lidar and imagery was 

evaluated and the comparison between the extracted lines and the existing DCDB was within 

RMSE of 0.282 and 0.258 for Lidar and Imagery extractions respectively. Thus, for areas where 

the fence-lines are a close approximation of the property boundary, this method can be used to 

upgrade the graphical representation of the digital cadastre with a high degree of correlation to 

the fences. 

Finally, the sources of errors in fence-line extraction was discussed with various examples. The 

methods to minimise these errors were not discussed, but it needs a revisit of the variable 

parameters as well as the processing steps. 
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7 Recommendation for Cadastral Upgrade 

7.1 Background 

This chapter discusses the big picture of cadastral data upgrade and the considerations for the 

operational implementation by cadastral jurisdictions. Firstly, operational opportunities and 

benefits to custodians of digital cadastral data are explored based on time savings, accuracies 

obtained and how much effort would be needed to integrate it in the existing processes. 

It then explores the limitations and expected issues in the implementation of the process. For 

CRCSI/FrontierSI it presents an opportunity to commercialise not just the process, but other 

learnings and prospects.  

Finally, there is an in-depth analysis of time taken for fence-line extraction followed by 

recommendations on relative advantages and resolutions of Lidar and Imagery as well as 

algorithm improvement. 

7.2 Operational Opportunities 

7.2.1 Potential Benefits to Organisations 

The developed process and the GUI have provided a start to organisations looking to 

implement it. The output from this research project has proved that it is feasible to upgrade the 

digital cadastre using the developed algorithm.  

There are multiple other considerations such as whether the accuracy of the existing cadastre is 

already greater than that could be attained by this process, or whether there are other 

processes (planned or implemented) for improvement of cadastral upgrade that are already in 

the pipeline, or whether there is time and resource impact from implementing this process. 
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7.2.2 Time savings 

An analysis done in Section 7.5 below shows that there are significant time savings by using this 

process. Although this analysis displays data for an area of 1km x 1km, automation is possible 

by this process where the entire feature extraction for a given area can be processed in one 

run.  

The algorithm has a further fail-safe mechanism where if a process is interrupted in the middle 

due to any issues, the algorithm can re-start at the last processing point and complete the 

extraction.  

A further advantage of the algorithm is that the processing is done in tiles and the output are in 

individual folders named as per the tiles, so cadastral upgrade processes can start using the tiles 

already processed, even when the fence-line extraction process is continuing to run. 

7.2.3 Accuracy Attained 

Accuracy analysis of various aspects of the output of the project was done in detail in chapter 6. 

It was seen that for the area studied, the horizontal RMSE using Lidar data is 0.282. In DNRME, 

the accuracy attribute of the digital cadastre for processes using ortho-imagery are reported 

between 2m to 5m. The accuracy obtained from the fence-line extraction in this project has 

exceeded that accuracy while maintaining a higher speed of data upgrade. 

7.2.4 Process Integration 

The fence-line extraction produces a shapefile that can be integrated in most GIS software. This 

provides an opportunity of integrating current data upgrade processes by using fence-lines as 

the input for digital cadastral block adjustment.  
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7.3 Limitations 

7.3.1 Accuracy Expectations  

While the previous section has shown that there are clear advantages of implementing the 

algorithm for cadastral upgrade, there are some considerations and limitations that need to be 

taken into account.  

The accuracy attained from this process have been for ideal conditions and may be different 

when using it in a real-world situation. The accuracies attained are dependent on data, 

topography, fences being in the correct location etc.  

Also, these are not a replacement to survey accurate data and can only be used as an interim 

measure to improve the geo-positional accuracy of the cadastre while waiting for other 

processes to improve the accuracy.  

This process will however improve the “look” of the data for landowners viewing their cadastral 

boundary lines in online portals and search engines, where there will be no visible difference in 

the boundary lines and the fences. 

7.3.2 Time Expectations 

The algorithm was run in an 8 Core Workstation which would have improved the speed of 

processing significantly. There would be other variables for speed of processing such as data 

density, and whether there was some additional data clean-up necessary for improving the 

results of the fence-line extraction. 

This can however be addressed by having a dedicated powerful computer just for processing 

this algorithm while the output would be used in other existing computers.  

7.3.3 Ease of Adaptation of the Algorithm 

The algorithm was developed progressively and the GUI and other specific processing steps 

were developed in conjunction, therefore the steps and processes have become easy for the 

project team to understand and implement which might be difficult for a fresh user to learn.  
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Also, the algorithm was developed as two versions, one open source IDL and the other ENVI 

IDL, and the latter version has more functionalities. This means that users with no ENVI licence 

would be able to run the program with no difficulty but they would not have all the ease of use 

as the licensed version.  

The GUI is however easy to use with all menu items one-level deep and accessible with intuitive 

steps and users can familiarise with the process relatively easily. There is a step by step 

instruction on how to run the GUI in Appendix 10.7.  

7.3.4 Data Availability 

The biggest issue with using this process is the availability of Lidar data. The imagery part of the 

algorithm still needs a significant amount of work before it can be considered as useful as the 

Lidar algorithm. Lidar data is expensive to capture and it has been shown in Section 5.5 that at 

least a medium density Lidar of more than 20ppsm is needed, which is an expensive initial 

outlay. For larger states this becomes a much bigger issue with costs for Lidar data capture. 

Geiger Mode Lidar however provides a cost effective method of capturing large areas Lidar 

data. With a coverage of 1000 to 1500 square kilometres per hour, it can capture large areas of 

data for similar weather and climate conditions in one data capture mission. This Lidar has 

shown to provide good results for fence-line extraction. An added benefit of a Lidar capture, 

whether Geiger Mode or existing aerial Lidar, is that these data have multiple uses such as 

elevation models, contours, city models, flood modelling, monitoring etc.  

7.3.5  Existing processes 

While the fence-line extraction process is seen to fit with existing upgrade process of 

Queensland, it is not certain how it will fit with other cadastral jurisdictions. There is also the 

possible human element of rejecting changes in existing processes among DCDB operators. 

The most likely solution to this is firstly to test if this process fits existing processes and 

secondly to train cadastral upgrade staff.  
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7.4 Commercialisation Opportunities for CRCSI 

The source code in IDL for the GUI can be re-packaged in other languages such as Python if 

required. The open source IDL itself can be used to modify aspects of the GUI and other feature 

extraction code for other purposes. 

There is further opportunity to develop a enhanced add-on package for users of a licensed 

package such as ENVI which is independent to the original package but acts as a add-on 

subscirption based package (e.g. SurvaCAD is a add-on package on AutoCAD). 

The developed workflow and GUI has the potential to be used in other feature extraction 

processes apart from fence-line detection by altering parameters, so there is further 

opportunities to package this for a broader use in the field of feature extraction, Lidar 

processing, and image processing. 

As there is now a substantial body of work and understanding of the various processes, data 

manipulation, Lidar processing, image-processing, accuracy assessments etc., these can be used 

as commercialisation opportunities by providing training and consulting services. 

There can be further opportunities for commercialisation by publishing books or training 

materials that are a direct outcome of this project and which can be enhanced by tailoring it to 

the theme of a book or training material to be developed. 

Finally, since there is a great need for upgrading the digital cadastre for cadastral jurisidictions 

and there have been examples of this kind of work being outsourced, there might be 

commercislaisation opportunities for CRCSI/FrontierSI of facilitating the upgrade of the digital 

cadastre for other states and territories in Australia and internationally. 

7.5 Processing Times for Fence-line extraction 

One consideration for using this method for cadastral upgrade is to ascertain whether it 

provides actual time savings. One of the main problems with the current data upgrade method 

was the time and labour intensive processes.  
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Table 7-1: Time taken for fence-line extraction from various Lidar data sources and resolutions 

Data Density # points 
Area 
coverage 

Total Time 
(a+b+c) 

Project 
creation (a) 

Classification 
(b) 

Fence 
extraction (c) 

Low Res 
Vertical  

761,316 
300m x 
301m 

3 min 1 min 1 min 1 min 

Low Res 
Horizontal 

946,131 
300m x 
301m 

3 min 1 min 1 min 1 min 

Low Res 
Combined 

2,952,146 
500m x 
501m 

3 min 1 min 1 min 1 min 

Mid Res 
Vertical 

13,145,120 
970m x 
1001m 

12 min 1 min 2 min 9 min 

Mid Res 
Horizontal 

6,585,071 
500m x 
501m 

8 min 1 min 2 min 5 min 

Mid Res 
Combined 

25,580,305 
1000m x 
1001m 

24 min 2 min 5 min 17 min 

High Res 
Combined 

63,829,555 
1000m x 
1001m 

41 min 4 min 18 min 19 min 

Geiger Mode 397,472 
99m x 
97m 

1.5 min 0.5 min 0.5 min 0.5 min 

Adelaide 14,177,031 
1000m x 
1001m 

15 min 1 min 2 min 12 min 

Table 7-2: Time calculation for fence-line extraction in another computer at Harris Geospatial, USA 

Location # points Total Time 
(a+b+c) 

Project creation 
(a) 

Classification (b) 
Fence extraction 

(c) 

Test Area 1 62,947,783 95 min 40 min 21 min 34 min 

Test Area 2 71,947,201 105 min 39 min 28 min 38 min 

 

Table 7-1 shows data from an evaluation of Lidar over the project area of Morayfield and 

additional areas and Lidar such as Geiger Mode and Adelaide. The flight lines for this capture 

was both East-West (horizontal) and North-South (vertical). The Low res (resolution) data 

represented one scene of 8ppsm, the Mid res represented three scenes of 24ppsm, and High 

res represented 20 scenes.  

It can be seen that the most time taken for fence-line extraction for a 1000m x 1000m area was 

41 minutes for the highest density Lidar. In a similar area for medium resolution Lidar, the 

maximum time taken was 24 minutes.  
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To eliminate the possibility that one computer might be processing the algorithm quicker, the 

same algorithm was tested in another computer in Harris Geospatial, USA, although the 

specification of the computer used is unknown. Table 7-2 shows that for a very large number of 

Lidar point clouds, the processing time was a little over an hour and a half.  

With time allowance for creating link files for block rubber sheeting of DCDB lines, the entire 

process could be completed within an hour to two hours. In speaking with DCDB upgrade staff 

at DNRME, this process could be expected to take a week to two weeks depending upon the 

complexity of the area and data available. Therefore, this process does provide significant time 

savings for cadastral jurisdictions looking to upgrade the cadastre as an interim step towards 

numerical cadastre, whenever that may be achieved.  

7.6 Lidar and Imagery Capture – Relative Advantages 

When comparing the use of imagery to the use of Lidar data to extract fence lines, Lidar data 

has some significant advantages. 

Lidar has a true 3D point representation which gives the ability to use the height information. 

Perspective (look angle) does not impact the positional accuracy of the points for Lidar data 

capture compared to imagery. Sometimes it can be difficult to distinguish the top from the 

bottom of a fence at an oblique angle (depending on spatial resolution). 

There are existing Lidar algorithms for extracting terrain and buildings as a pre‐processing step. 

Lidar can be flown at night or during the day, and is not affected by shadows while imagery 

needs sunlight, and shadows depending on the time of day can create linear features in the 

imagery that can be confusing to a line extraction algorithm.  

Imagery needs to be ortho-rectified which can introduce errors, however, imagery is typically 

less expensive to collect and can be collected more quickly. Also, imagery can be collected at a 

very good resolution which allows for easier interpretation by a human analyst. 
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7.7 Lidar and Imagery – Recommended Capture Resolution  

While high resolution Lidar provides better fence-line extraction and less errors of commission, 

the mid resolution Lidar of around 20-30ppsm seem adequate, which translates to 3-4 

overlapping Lidar scenes.  

For imagery, the Morayfield scenes were captured at 6cm GSD, while the ortho-rectified 

imagery supplied for Toowoomba was 10cm GSD. While there was no appreciable difference 

between the two, it is recommended that either the ortho-rectification is done in-house using 

highly accurate control marks and DEM, supplied data could be checked rigorously for accuracy 

and fit before used for processing or validation. 

From the evaluation in Section 5.5, it could be seen that two different directions of Lidar data 

capture assisted in covering fences in all directions, however, it is not clear if the same holds for 

imagery capture. It was also not clear if the algorithm had a bias towards any direction of data 

capture. 

7.8 Algorithm Improvement 

There have been some sources of error identified in Section 6.4, and the algorithm processing 

steps are listed in Section 5.2. Also the source code of the project is made available. This 

provides an opportunity to improve the algorithm to reduce the errors and false positive 

detections. There is also opportunity to improve the imagery based fence-extraction algorithm. 

7.9 Summary 

From evaluation of the opportunities and limitations of the algorithm and the time and labour 

savings that this can provide it is clear that organisations can benefit from utilising this process. 

There are multiple things to consider before taking such as step which have been discussed in 

this chapter. 
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8 Conclusion and Future Research 

8.1 Review of Aim and Objectives 

As discussed in Chapter 1, the problem identified with the digital cadastre of Queensland was 

that there was a large variation in the positional accuracy of the graphical representation of the 

cadastre in the DCDB (Appendix 10.1).  

Further, this dataset was used by many organisations to link their spatial dataset or asset 

management systems which caused issues for the respective organisations because most of 

them had their asset location at a better spatial accuracy.  

The problem with cadastral data management authorities like the DNRME in Queensland was 

that the existing processes of upgrading the cadastral data to a better spatial accuracy had to 

be done using manual processes and aerial imagery in conjunction with the update of the 

database from surveyed data for new development that was being submitted to the 

department by surveyors, which meant many surveyed data had to fit the existing inaccurate 

representation. 

There is an identified need to explore different ways to speed up the process of upgrading the 

digital database. Thus, the aim of this project was to evaluate the feasibility of utilising Lidar 

and Imagery to extract fence-lines for geo-positional upgrade of digital cadastre data and to 

evaluate the accuracies obtained.  

To achieve the aim of the research, four research objectives were defined. The objectives and 

their associated research questions assisted to guide this research project and the results of 

each of the objectives are discussed in the subsequent sections below (Sections 8.2 to 8.5). 

 

 



99 

 

8.2 Objective 1: Upgrade Methodologies 

The first objective was to “develop upgrading methodologies for cadastral data based on 

automated feature extraction and to assess their applicability and potential for operational 

implementation by partner land agencies”. 

A two-step strategy to deliver an upgrade methodology was formulated. Firstly, various 

methods of fence-line extraction were explored; and next, the extracted fence-lines were used 

to block shift and adjust the cadastre that included evaluation of accuracy metrics in each 

stage.  

The primary plan was to extract fence-lines for the upgrade methodology. Various methods of 

feature extraction were explored and finally a graphical user interface developed using various 

semi-automated steps for feature extraction was selected.  

Further experimentation was done to explore the usability of imagery alone. An edge detection 

algorithm was used, however this produced a large number of lines that were considered noise, 

as it was not possible to distinguish fence-lines from other lines. The process used in 

conjunction with Lidar to filter out lines not falling within a certain elevation range produced a 

better result, however, as fences in imagery are not orthogonally projected and are reliant on 

look angles, this produces lines that are not vertically in a position that the footprint of the 

fence would be. Further investigation perhaps by using convolution neural network is required 

for this process. 

The objective of developing an upgrade methodology was achieved and it has been discussed in 

detail in Chapters 4 of this document. 
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8.3 Objective 2: Evaluation of Data Sources 

The second objective of this research project was to “evaluate the contribution of remotely 

sensed data sources (e.g. airborne and satellite imagery, and Lidar) to upgrading the spatial 

accuracy of the digital cadastre”.  

The contribution of airborne Lidar and Imagery to achieve the aim were evaluated and is 

discussed in Chapter 5. The existing processes used in DNRME utilised ortho-rectified imagery 

to upgrade the cadastral data to a better spatial location by block-shifting the digital data to 

identified fence-lines in the imagery.  

There has been a significant investment made by the department in the current processes to 

customise the steps necessary to upgrade the cadastral data, and existing staff are familiar with 

the processes. Unless there are significant changes made to the current processes, it was logical 

therefore that the same processes would be continued to be used and any improvement made 

in automated identification of the fence-lines would assist to speed up the process of block-

shifting the cadastral lines and snapping to the identified fence-lines through a semi/fully 

automatic process.  

Evaluation made of the aerial Lidar and imagery demonstrated that they were capable of 

identifying fence-lines at varying resolutions of the data. Further evaluations were made of the 

various resolutions of Lidar data that would provide an optimal solution to extracting fence-

lines from the point cloud. Finally, it was concluded that processes using Lidar, and to some 

extent integrated Imagery and Lidar processing, was capable of contributing to the upgrade of 

the spatial accuracy of the digital cadastre. 

8.4 Objective 3: Accuracy Achievable 

The third objective of this project was to “identify, through experimental testing, the accuracy 

achievable from those data sources individually and in combination”.  

Accuracy testing of the data and the results were done for multiple aspects and reported in 

Chapter 6. Initially it was necessary to determine the accuracies of the Lidar data and the aerial 
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imagery. After the evaluation of the accuracies of the input data, evaluation of the accuracies 

obtained from the various processing outputs were planned.  

Initial evaluations of the ortho-rectification done for the aerial imagery captured over the 

Morayfield area revealed a systematic shift of 1.2m with respect to lines obtained from Lidar 

processing. There were three possible reasoning for this discrepancy – firstly, the Lidar capture 

was incorrect including the GNSS system used, or the spatial reference used or error in post-

processing; secondly, the imagery capture was incorrect including the photo centre coordinates 

provided or the spatial reference used; and finally, the processes used in ortho-rectification or 

the perspective projection of the fence-lines were the contributing factors. 

Therefore, static differential GPS field survey was done over a smaller area in Morayfield to test 

the data. The field survey data was processed using AUSPOS and three control points found in 

the area were upgraded to 2nd Order Class B through the process. The evaluation of the Lidar 

data provided evaluation metrics that proved that the Lidar data capture was accurate for the 

purpose of the research.  

The same GPS coordinates were and DEM derived from the high resolution Lidar was utilised 

for the ortho-rectification of the aerial imagery and evaluation of the results demonstrated that 

the issues had been resolved and the new ortho-rectification was consistent with Lidar data and 

GPS coordinates.  

The next stage was to test the accuracy of the output of the feature extraction process. The 

DCDB for this area had a published accuracy value of 0.1m, which is given to DCDB upgrade 

done by survey accurate data. Therefore, testing of the extracted fence-line was done to 

compare the output lines with respect to the DCDB based on coordinate values on selected 

intersection points and statistical analysis.  

Thus, from experimental testing of the accuracy obtained for the various processes, the results 

proved that the output had a high accuracy; the only limitation was the question of whether 

fence-lines could be considered property boundaries, but since existing DNRME process already 

used fence-lines to upgrade the cadastre this question was not explored. 
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8.5 Objective 4: Recommendations 

The fourth and final objective of this research was to “deliver recommendations on how and 

under what conditions remote sensing data might be employed for cadastral upgrade 

purposes”.  

The research project explored various airborne Lidar and Imagery data including Geiger mode 

Lidar data for feature extraction. The processes developed demonstrated that it is feasible to 

use Lidar and Imagery to extract fence-lines and that these lines can be used to upgrade the 

cadastral lines or polygons. Time saved in the process was evaluated, and it can definitely 

provide ease and accuracy for block-shift of cadastral lines.  

Exploration of various data from different sources demonstrated the requirement for data that 

is not processed too much by the vendor and is recommended to be done by the agencies in 

conjunction with higher accuracy coordinates in the area of interest.  

Evaluation was also done on the optimal resolution of the Lidar data for the feature extraction. 

There is scope for improving the developed GUI, the source code for which has been made 

available in IDL format.  

The processes developed in this research can be recommended for use in an operational 

environment, provided there is Lidar data that is available. Data acquired by organisations 

generally tend to have multiple applications and this is one aspect that can assist with data 

acquisition for use in this process. 

8.6 Future Research 

The Lidar processes can be improved to output more fence-lines using lower resolution Lidar 

data. The time constraint for this research meant that all the options that could be modified in 

the parameter files were not explored for improving the results and default values were used 

throughout so there is scope for improving the results by experimenting with the default 

values. 
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The training of the support vector machine could be improved with multiple iterations of 

training which were not done for this research but there is potential for improvement if 

researched in the future. 

The output of the process resulted in buildings that were extracted, which was not used in this 

process, but could be used to either create a standalone buildings database or to upgrade the 

cadastre which contained building roof-prints as part of the database. 

Geiger Mode Lidar seems to be a cost effective high resolution data that could provide a wide 

coverage for use in the developed process. This research had access to a small image from the 

US, but the result showed great promise in extracting fence-lines.  

The results achieved from the imagery could be improved by using Convolution Neural Network 

(CNN) in conjunction with SVM to filter results. A relative DEM model was used to filter the 

lines based on the expected range of height above ground of a fence-line, however this same 

process can be used for feature extraction of other features with specific height attributes.  
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10 Appendices 

10.1 Positional Accuracy of DCDB in Queensland 
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10.2 Camera Calibration Report Extract 
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Distortion Error of radial symmetric components of 
above parameters 

The green line show the magnitude of the decentring 
distortions on the four image diagonals. This gives an 
impression of what will be missed if only radial distortion 
components are used. 
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10.3 Photos Lidar + Imagery Data Capture 
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10.4 Photos GPS Field Survey 
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10.5 Processing in Lastools 

 

Convert LAS (.las) files to Zipped LAS (.laz) files for ease of processing: The zipped .laz files are about 6 

times smaller in size. 

lastile -i Input_Folder\*.las –odir Out_Folder\Laz –olaz 

Compute information and check density of point cloud of the provided tiles 

lasinfo -i Input_Folder\*.laz -cd -otxt -odir Out_Folder \Laz -odix _info -cores 7 

Create regular tiles from original and place them in raw folder: An overlap buffer is specified for edge-

matching. Flight line information is maintained. As the free version of LASTools does not allow to work 

with a point cloud greater than 1Million points, so it is sometimes necessary to create smaller tiles 

(250mx250m in this case). 

lastile -i Input_Folder\*.laz -files_are_flightlines -tile_size 250 -buffer 50 -odir 

Out_Folder\tiles_raw\ -olaz 

Create individual shapefiles of the polygon boundary of Las files: Run ArcGIS model to include filename 

as an attribute; Run Merge to create a single shapefile, delete the temporary individual files 

lasboundary -i Input_Folder\tiles_raw\*.laz -odir Out_Folder \temp -use_tile_bb -oshp 

 

Extract bare earth: By classifying ground points in class=2 and non-ground points in class=1. The cores 7 

is for multi-thread processing but depends on the number of cores available (e.g. this computer has 8 

cores so 7 are used for parallel processing) 

lasground -i Input_Folder \tiles_raw\*.laz -town -coarse -odir Out_Folder\Laz\tiles_ground -olaz 

-cores 7 
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Compute the height of each LAS point above the ground from ground classified points to identify and 

construct ground TIN: 

lasheight -i Input_Folder \Laz\tiles_ground\*.laz -drop_below -2 -drop_above 30 -odir 

Out_Folder\ Laz\tiles_height -olaz -cores 7 

 
 

Classify buildings and vegetation: From points whose bare earth computation has already been 

completed 

lasclassify -i Input_Folder\Laz\tiles_height\*.laz -step 3 -odir Out_Folder\Laz\tiles_classified -

olaz -cores 7 

  
 

Classified – Ground, Building, Vegetation 

Create non-overlapping square tiles  

lastile -i Input_Folder\tiles_classified\*.laz -set_user_data 0 -remove_buffer -odir Out_Folder 

\Laz\tiles_final -olaz 
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Compute information and check density of point cloud of the new tiles 

lasinfo -i Input_Folder\tiles_final\*.laz -cd -otxt -odir Out_Folder\Laz\tiles_final -odix _info -cores 

7 

Create individual shapefiles of the polygon boundary of the new tiles: Run ArcGIS model to include 

filename as an attribute; Run Merge to create a single shapefile, delete the temporary individual files 

lasboundary -i Input_Folder\Laz\tiles_final\*.laz -odir Out_Folder\Laz\temp -use_tile_bb -oshp 

Create DTM and DSM: Read LIDAR points from the LAS/LAZ format, triangulate them temporarily into a 

TIN, and rasterise the TIN onto a DEM (Both DTM and DSM). This process creates a Digital Terrain Model 

(DTM) of the ground surface 

las2dem -i Input_Folder\Laz\tiles_classified\*.laz -keep_class 2 -thin_with_grid 0.1 -extra_pass -

odir Out_Folder\Laz\tiles_dtm -obil -cores 7 

This process creates a Digital Surface Model (DSM) of the non-ground surface 

las2dem -i Input_Folder\Laz\tiles_classified\*.laz -first_only -thin_with_grid 0.1 -extra_pass -

use_tile_bb -odir Out_Folder\tiles_dsm -obil -cores 7 

Create a combined raster of the DTMs created earlier: If the number of points are above one million 

then black diagonal lines are introduced, so it might be desirable to create individual DTMs and merge 

them later. 

lasgrid -i Input_Folder\Laz\tiles_dtm\*.bil -merged -odir Out_Folder\Laz\tiles_dtm -o dtm.tif 

Create a combined raster of the DSMs created earlier: If the number of points are above 1Million then 

black diagonal lines are introduced, so it might be desirable to create individual DSMs and merge them 

later. 

lasgrid -i Input_Folder\Laz\tiles_dsm\*.bil -merged -odir Out_Folder\Laz\tiles_dsm -o dsm.tif 

Create a combined Hillshade of the DTMs created earlier: If the number of points are above 1Million 

then black diagonal lines are introduced, so it might be desirable to create individual hillshade files and 

merge them later. 

blast2dem -i Input_Folder\Laz\tiles_dtm\*.bil -merged -hillshade -odir Out_Folder\tiles_dtm -o 

dtm_hillshade_raster.png 

Create a combined Hillshade of the DSMs created earlier: If the number of points are above 1Million 

then black diagonal lines are introduced, so it might be desirable to create individual Hillshade files and 

merge them later. 

blast2dem -i Input_Folder\Laz\tiles_dsm\*.bil -merged -hillshade -odir Out_Folder\tiles_dsm -o 

dsm_hillshade_raster.png 
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Create a combined contour of the DTM at 1m contour intervals: Lines smaller than 5 units and area 

smaller than 1 unit are cleared. Lengths smaller than 0.5 units are simplified. 

blast2iso -i Input_Folder\Laz\tiles_dtm\*.bil -merged -iso_every 1 -simplify_length 0.5 -

simplify_area 1 -clean 5 -odir Out_Folder\tiles_dtm -o dtm_contours_raster_1m.shp 

Create a combined contour of the DSM at 3m contour intervals: Lines smaller than 5 units and area 

smaller than 1 unit are cleared. Lengths smaller than 0.5 units are simplified. 

blast2iso -i Input_Folder\Laz\tiles_dsm\*.bil -merged -iso_every 3 -simplify_length 0.5 -

simplify_area 1 -clean 5 -odir Out_Folder\tiles_dsm -o dsm_contours_raster_3m.shp 

Filter points above ground level between 0.5<elevation<2.0: This filters all points outside of 0.5-2m AGL 

for further processing. 

lasheight -i Input_Folder\Laz\temp\*.laz -drop_below 0.5 -drop_above 2 -odir 

Out_Folder\temp\ht -olaz -cores 7 
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10.6 Input Parameters for the Developed GUI 

Three .json files have been created for the input parameters that are read by the graphical user 

interface (GUI). These parameters are applicable to both ENVI and non-ENVI version. An 

additional .json file exists for imagery based application. 

JSON File Contents: High Density Data Parameters 

{ 
    "FENCES": { 
        "FENCES_MAXIMUM_HEIGHT": 2.5000000, 
        "FENCES_MINIMUM_HEIGHT": 0.6000000, 
        "FENCES_MINIMUM_NUM_POINTS": 20, 
        "FENCES_PERPENDICULAR_TOLERANCE": 0.3000000, 
        "FENCES_MAXIMUM_GAP": 0.75000000, 
        "FENCES_CLUSTER_DISTANCE": 0.60000000, 
        "FENCES_MINIMUM_LENGTH": 4.0000000, 
        "FENCES_VEG_REMOVAL_KERNEL_RADIUS": 2.0000000, 
        "FENCES_VEG_REMOVAL_GRID": 5, 
        "FENCES_VEG_REMOVAL_MAXIMUM_COVERAGE": 75, 
        "SVM_MODEL": "RBF-Dense-50.model" 
    }, 
    "BUILDINGS": { 
        "BUILDINGS_MINIMUM_AREA": 10.000000, 
        "BUILDINGS_NEAR_GROUND_FILTER_WIDTH": 300.00000, 
        "BUILDINGS_PLANE_SURFACE_TOLERANCE": 30.000000, 
        "BUILDINGS_POINTS_IN_RANGE": 0.0000000 
    }, 
    "DEM": { 
        "DEM_CONSTANT_HEIGHT_OFFSET": 2.0000000, 
        "DEM_FILTER_DATABASE_EDGES": 0, 
        "DEM_FILTER_LOWER_POINTS": 10, 
        "DEM_NEAR_TERRAIN_CLASSIFICATION": 50.000000, 
        "DEM_SENSITIVITY": 30.000000, 
        "DEM_VARIABLE_SENSITIVITY_ALGORITHM": 0 
    }, 
    "DSM": { 
        "DSM_USE_POWERLINES_POINTS": 1, 
        "DSM_GENERATE": 0 
    }, 
    "POWERLINES": { 
        "POWERLINES_FILTER_BY_MIN_JOINED_LENGTH": 0, 
        "POWERLINES_MIN_JOINED_LENGTH": 20.000000, 
        "POWERLINES_FILTER_TREES_BELOW_POWERLINES": 1, 
        "POWERLINES_MIN_LENGTH": 10.000000, 
        "POWERLINES_SEARCH_LOWKV": 0, 
        "POWERLINES_SEARCH_WIDE": 0, 
        "POWERPOLES_CLASS_EXTEND_TOP": 0.0000000, 
        "POWERPOLES_CLASS_RADIUS_LOW": 3.0000000, 
        "POWERPOLES_EXTEND_WIRES_DISTANCE": 40.000000, 
        "POWERPOLES_MAX_RADIUS_TOP": 10.000000, 
        "POWERPOLES_SEARCH_ADDITIONAL": 0 
    }, 
    "TREES": { 
        "TREES_MAX_HEIGHT": 5000.0000, 
        "TREES_MIN_HEIGHT": 130.00000, 
        "TREES_MAX_RADIUS": 600.00000, 
        "TREES_MIN_RADIUS": 200.00000 
    } 
} 

 



121 

 

JSON File Contents: Medium Density parameters 

{ 
    "FENCES": { 
        "FENCES_MAXIMUM_HEIGHT": 2.5000000, 
        "FENCES_MINIMUM_HEIGHT": 0.6000000, 
        "FENCES_MINIMUM_NUM_POINTS": 15, 
        "FENCES_PERPENDICULAR_TOLERANCE": 0.3000000, 
        "FENCES_MAXIMUM_GAP": 1.75000000, 
        "FENCES_CLUSTER_DISTANCE": 1.20000000, 
        "FENCES_MINIMUM_LENGTH": 3.0000000, 
        "FENCES_VEG_REMOVAL_KERNEL_RADIUS": 2.0000000, 
        "FENCES_VEG_REMOVAL_GRID": 5, 
        "FENCES_VEG_REMOVAL_MAXIMUM_COVERAGE": 75, 
        "SVM_MODEL": "RBF-Dense-50.model" 
    }, 
    "BUILDINGS": { 
        "BUILDINGS_MINIMUM_AREA": 10.000000, 
        "BUILDINGS_NEAR_GROUND_FILTER_WIDTH": 300.00000, 
        "BUILDINGS_PLANE_SURFACE_TOLERANCE": 30.000000, 
        "BUILDINGS_POINTS_IN_RANGE": 0.0000000 
    }, 
    "DEM": { 
        "DEM_CONSTANT_HEIGHT_OFFSET": 2.0000000, 
        "DEM_FILTER_DATABASE_EDGES": 0, 
        "DEM_FILTER_LOWER_POINTS": 10, 
        "DEM_NEAR_TERRAIN_CLASSIFICATION": 50.000000, 
        "DEM_SENSITIVITY": 30.000000, 
        "DEM_VARIABLE_SENSITIVITY_ALGORITHM": 0 
    }, 
    "DSM": { 
        "DSM_USE_POWERLINES_POINTS": 1, 
        "DSM_GENERATE": 0 
    }, 
    "POWERLINES": { 
        "POWERLINES_FILTER_BY_MIN_JOINED_LENGTH": 0, 
        "POWERLINES_MIN_JOINED_LENGTH": 20.000000, 
        "POWERLINES_FILTER_TREES_BELOW_POWERLINES": 1, 
        "POWERLINES_MIN_LENGTH": 10.000000, 
        "POWERLINES_SEARCH_LOWKV": 0, 
        "POWERLINES_SEARCH_WIDE": 0, 
        "POWERPOLES_CLASS_EXTEND_TOP": 0.0000000, 
        "POWERPOLES_CLASS_RADIUS_LOW": 3.0000000, 
        "POWERPOLES_EXTEND_WIRES_DISTANCE": 40.000000, 
        "POWERPOLES_MAX_RADIUS_TOP": 10.000000, 
        "POWERPOLES_SEARCH_ADDITIONAL": 0 
    }, 
    "TREES": { 
        "TREES_MAX_HEIGHT": 5000.0000, 
        "TREES_MIN_HEIGHT": 130.00000, 
        "TREES_MAX_RADIUS": 600.00000, 
        "TREES_MIN_RADIUS": 200.00000 
    } 
} 
 

JSON File Contents: Sparse Density Parameters: 

{ 
    "PREPROCESS": { 
      "HILLSHADE_GSD": 0.2, 
      "HILLSHADE_MAX_HEIGHT": 50.0, 
      "HILLSHADE_MIN_HEIGHT": -0.1 
    }, 
    "FENCES": { 
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        "FENCES_MAXIMUM_HEIGHT": 2.5000000, 
        "FENCES_MINIMUM_HEIGHT": 0.6000000, 
        "FENCES_MINIMUM_NUM_POINTS": 10, 
        "FENCES_PERPENDICULAR_TOLERANCE": 0.5000000, 
        "FENCES_MAXIMUM_GAP": 6.00000000, 
        "FENCES_CLUSTER_DISTANCE": 5.00000000, 
        "FENCES_MINIMUM_LENGTH": 8.0000000, 
        "FENCES_VEG_REMOVAL_KERNEL_RADIUS": 6.0000000, 
        "FENCES_VEG_REMOVAL_GRID": 5, 
        "FENCES_VEG_REMOVAL_MAXIMUM_COVERAGE": 60, 
        "SVM_MODEL": "RBF-Dense-50.model" 
    }, 
    "BUILDINGS": { 
        "BUILDINGS_MINIMUM_AREA": 10.000000, 
        "BUILDINGS_NEAR_GROUND_FILTER_WIDTH": 300.00000, 
        "BUILDINGS_PLANE_SURFACE_TOLERANCE": 30.000000, 
        "BUILDINGS_POINTS_IN_RANGE": 0.0000000 
    }, 
    "DEM": { 
        "DEM_CONSTANT_HEIGHT_OFFSET": 2.0000000, 
        "DEM_FILTER_DATABASE_EDGES": 0, 
        "DEM_FILTER_LOWER_POINTS": 10, 
        "DEM_NEAR_TERRAIN_CLASSIFICATION": 50.000000, 
        "DEM_SENSITIVITY": 30.000000, 
        "DEM_VARIABLE_SENSITIVITY_ALGORITHM": 0 
    }, 
    "DSM": { 
        "DSM_USE_POWERLINES_POINTS": 1, 
        "DSM_GENERATE": 0 
    }, 
    "POWERLINES": { 
        "POWERLINES_FILTER_BY_MIN_JOINED_LENGTH": 0, 
        "POWERLINES_MIN_JOINED_LENGTH": 20.000000, 
        "POWERLINES_FILTER_TREES_BELOW_POWERLINES": 1, 
        "POWERLINES_MIN_LENGTH": 10.000000, 
        "POWERLINES_SEARCH_LOWKV": 0, 
        "POWERLINES_SEARCH_WIDE": 0, 
        "POWERPOLES_CLASS_EXTEND_TOP": 0.0000000, 
        "POWERPOLES_CLASS_RADIUS_LOW": 3.0000000, 
        "POWERPOLES_EXTEND_WIRES_DISTANCE": 40.000000, 
        "POWERPOLES_MAX_RADIUS_TOP": 10.000000, 
        "POWERPOLES_SEARCH_ADDITIONAL": 0 
    }, 
    "TREES": { 
        "TREES_MAX_HEIGHT": 5000.0000, 
        "TREES_MIN_HEIGHT": 130.00000, 
        "TREES_MAX_RADIUS": 600.00000, 
        "TREES_MIN_RADIUS": 200.00000 
    } 
} 
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Comparison of the parameters 

These parameters are read in the GUI and a comparison of all the parameters together are 

shown below. If any values need to be changed it is best to change it in the .json file. 

High Density Medium Low 
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10.7 How to Process Lidar data in the Developed GUI 

Step 1: As this is an IDL based coding, ensure that IDL is installed. With an ENVI installation, IDL 

is installed along-with ENVI specific libraries, but the software works with the open source 

version too, but has slightly different steps, which will be made clear here: 

Step 2: Open dnrmgui.sav; the following window opens, and click File menu to start 
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Step 3: For Lidar processing press “Select Las files”; for non-envi Lidar processing provide 

preclassified Lidar; and for imagery processing “Select Imagery” which will ask for a relative 

DEM file along-with the imagery; 

Step 4: Select algorithm settings which is the .json files based on the density of the Lidar. For an 

imagery based processing, select imagery-relevant .json files supplied in the same folder as the 

software;  

Step 5: Next open the Tools menu and select “Generate Density Map” (if processing Lidar). For 

Imagery or non-ENVI based implementation skip this step: 

 

Step 6: Next select “Generate Processing Grid” from the Tools menu. This provides an option to 

select the area to be processed and it is exported as a shapefile. For non-ENVI based 

implementation, a shapefile created externally should be provided to define the area of 

interest. Exit the processing grid selection window to return to the Main window. 
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Step 7: Select “Start Processing” button; the display window shows the steps being performed; 

 

Step 7: Select “Review Tool” from the Tools menu for quality assurance of the data as well as 

training the support vector machine (SVM). 

 

Step 8: After enough training samples have been selected, export the SVM training model; and 

export the shapefile whose probability values have been manually edited during the training. 
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Check the Log files for details of the implementation if required, this file is created at the 

location of the Lidar data and the name starts with the date and time of the process, so it 

should be easy to track if there are a lot of them. 
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10.8 Project Budget and Expenditure 

Project Budget: 

  Quarter ($) commencing 1 March 2017 

Item Q1 
Mar17 

Q2 
Jun17 

Q3 
Sep17 

Q4 
Dec17 

Q5 
Mar18 

Salaries           

Research Fellow/Assistant (Software 
development) (1 FTE) 

12,500 37,500 37,500 37,500 25,000 

Travel           

Melbourne/Brisbane travel, likely 4-6 
trips required by PLs and research 
team 

500 1,500 1,500 1,500 1,000 

Equipment           

Computing expenses & consumables 333 1,000 1,000 1,000 667 

Quarterly Totals 13,333 40,000 40,000 40,000 26,667 

Total Budget $160,000 

 

Project Expenditure  

ESRI + Harris Geospatial Consulting Services $130,660.00 

Expenses for data capture by RPS $8,000.00 

Travel (Sudarshan to Melbourne) $1,117.31 

Total Expenditure $139,777.31 

Unclaimed $20,222.69 

 

DNRME staff In-kind contribution (Hours)  

Russell Priebbenow – Project Lead 255 

Sudarshan Karki – Lead Researcher 2307 

Govinda Baral – Research Assistant 131 

Garry Cislowski – GPS Field Survey 15 

Total Hours 2708 
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10.9 Project Timeline 

Tasks, Milestones & Deliverables 
6.5 week blocks 

1 2 3 4 5 6 7 8 9 10 

Literature review of R&D in utilisation of imagery and Lidar for 
cadastral data upgrading  

          

Formulation of cadastral upgrade requirements & consideration 
of any legal/administrative/technical constraints 

          

Investigation of accuracy aspects of feature extraction for 
cadastral feature measurement via imagery & Lidar 

          

(a) Identification of test areas for pilot project and (b) 
sourcing/preparation of imagery and Lidar data 

          

The development of processing pipeline & software to support 
manual extraction of cadastre-relevant features from the imagery 
and Lidar data 

          

Conduct tests of manual feature extraction, accuracy validation & 
assessment of cadastral upgrading feasibility & prepare interim 
report 

          

Further development of processing pipeline & software to support 
automated feature extraction of cadastre-relevant features from 
the imagery and Lidar data, along with processes for automatic 
cadastre upgrading 

          

Experimental evaluation of the semi- and fully automatic feature 
extraction and cadastral upgrading methodology developed, over 
a number of different sites 

          

Analysis of results of pilot study, with a focus upon both accuracy 
and the practicability and reliability of the developed cadastral 
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Tasks, Milestones & Deliverables 
6.5 week blocks 

1 2 3 4 5 6 7 8 9 10 

upgrading methodology 

Preparation of final report and recommendations from the 
cadastral upgrading project, including assessment of feasibility for 
operational implementation of project developments 

         ◼ 

 


